Comparability orders and measurement

  • Einar Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 674)


This paper is concerned with the relationship between continuous phenomena and discrete representations in measurement. Empirical indistinguishability is identified as a fundamental notion. We show that this relation is in general not transitive and discuss the consequences of this fact for the construction and application of ordinal measurement scales. In particular, we develop a normal form for the representation of empirical orderings. This includes the investigation of denseness notions compatible with discrete partial orders.


Intransitive indifference Interval orders Concurrency-theory Ordinal scales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    U. Abraham, S. Ben-David, M. Madigor: On Global-Time and Inter-Process Communication. Workshops in Computing: Semantics for Concurrency, Leicester 1990. M. Z. Kwiatkowska, M.W. Shields, R.M. Thomas (eds.). Berlin: Springer (1990), 311–323.Google Scholar
  2. [2]
    V. S. Alagar, G. Ramanathan: Functional Specification and Proof of Correctness for Time Dependent Behaviour of Reactive Systems. Formal Aspects of Computing 3 (1991), 253–283.Google Scholar
  3. [3]
    W. E. Armstrong: A note on the Theory of Consumer's Behaviour. Oxford Economical Papers 2 (1950), 119–122.Google Scholar
  4. [4]
    T. C. Bartee: Digital Computer Fundamentals. (6th ed.). New York: McGraw-Hill (1985).Google Scholar
  5. [5]
    E. Best, C. Fernández C.: Nonsequential Processes. A Petri Net View. EATCS Series “Monographs in Theoretical Computer Science” 13. Berlin: Springer (1988).Google Scholar
  6. [6]
    R. Carnap: Logical Foundations of Probability. (2nd ed.). Chicago: University Press (1962).Google Scholar
  7. [7]
    R. Carnap: Philosophical Foundations of Physics. New York: Basic Books (1966).Google Scholar
  8. [8]
    K. Egle: Graphen und Präordnungen. Mannheim: Bibliographisches Institut (1977).Google Scholar
  9. [9]
    C. Fernández, P. S. Thiagarajan: A Lattice Theoretic View of K-Density. Lecture Notes in Computer Science 188, Berlin: Springer (1985), 139–153.Google Scholar
  10. [10]
    F. Fishburn: Interval Orders and Interval Graphs. New York: John Wiley & Sons (1985).Google Scholar
  11. [11]
    H. v. Helmholtz: Zählen und Messen, erkenntnistheoretisch betrachtet, in: Philosophische Aufsätze Eduaxd Zeller gewidmet. Leipzig (1887).Google Scholar
  12. [12]
    M. Joseph, A. Goswami: Relating Computation and Time. Univ. Warwick: Research Report 138, Dep. Comp. Scie. (1989).Google Scholar
  13. [13]
    J. M. Keynes: A Treatise on Probability (2nd ed.). New York: Mac Millan (1929).Google Scholar
  14. [14]
    D. Laugwitz: Zahlen und Kontinuum. Mannheim: Bibliographisches Institut (1986).Google Scholar
  15. [15]
    R. D. Luce: Semiorders and a Theory of Utility Discrimination. Econometrica 24 (1956), 178–191.Google Scholar
  16. [16]
    J. v. Neumann, O. Morgenstern: Theory of Games and Economic Behavior. Princeton: University Press (1944).Google Scholar
  17. [17]
    C. A. Petri: Non-Sequential Processes. St. Augustin: Internal Report of the GMD-ISF 77-5 (1977).Google Scholar
  18. [18]
    C. A. Petri: Modelling as a Communication Discipline. Unpublished manuscript; abstract in: H. Beilner, E. Gelenbe (eds.): Measuring, Modelling and Evaluating Computer Systems. Amsterdam: North Holland (1977), 435.Google Scholar
  19. [19]
    C. A. Petri: Concurrency. LNCS 84 (1980), 251–260.Google Scholar
  20. [20]
    C. A. Petri: Concurrency Theory. LNCS 254 (1987), 4–24.Google Scholar
  21. [21]
    C. A. Petri, E. Smith: Concurrency and Continuity. LNCS 266 (1987), 273–292.Google Scholar
  22. [22]
    J. Pfanzagl: Theory of Measurement Würzburg: Physica-Verlag (1971).Google Scholar
  23. [23]
    B. Russell: Our Knowledge of the External World, Lecture IV. London: Allen and Unwin (1914).Google Scholar
  24. [24]
    B. Russell: On Order in Time. Proc. Cambridge Philosophical Society 32 (1936), 216–228.Google Scholar
  25. [25]
    D. Scott: Measurement Structures and Linear Inequalities. Journal of Mathematical Psychology 1 (1964), 233–247.Google Scholar
  26. [26]
    D. Scott, P. Suppes: Foundational Aspects of Theories of Measurement. Journal of Symbolic Logic 23 (1958), 113–128.Google Scholar
  27. [27]
    E. Smith: Zur Bedeutung der Concurrency-Theorie für den Aufbau hochverteilter Systeme. Bericht der GMD 180. München: Oldenbourg (1989).Google Scholar
  28. [28]
    A. G. Walker: Durée et Instants. Revue Scientifique 85 (1947), 131–134.Google Scholar
  29. [29]
    A. G. Walker: Foundations of Relativity: Parts I and II. Proc. Roy. Soc. Edinburgh 62 (1948), 319–35.Google Scholar
  30. [30]
    G. J. Whitrow: The Natural Philosophy of Time (2nd ed.). Oxford: Clarendon (1980).Google Scholar
  31. [31]
    N. Wiener: A Contribution to the Theory of Relative Position. Proc. Cambridge Phil. Soc. 17 (1914), 441–449.Google Scholar
  32. [32]
    N. Wiener: A New Theory of Measurement: A Study in the Logics of Mathematics. Proc. London Math. Soc. 19 (1921), 181–205.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Einar Smith
    • 1
  1. 1.GMD-I1.P, Schloß BirlinghovenSt. AugustinGermany

Personalised recommendations