Saturation conditions for Stochastic Petri Nets

  • R. Gouet
  • F. Plo
  • M. San Miguel
  • B. Ycart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 674)


We give a necessary condition and a sufficient one for the saturation of a Markovian Stochastic Petri Net. These conditions can be explicitly checked in practical situations. As a particular case, we show that our conditions are equivalent to the classical condition of saturation for Jackson Queuing Networks. The applicability of the method is demonstrated also on examples of OSQN and OMS networks.

Key Words

Stochastic Petri Nets Conditions of saturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. AJMONE-MARSAN, G. BALBO, G. CONTE (1984) A class of generalized Stochastic Petri Nets for the performance evaluation of multiprocessor systems. A. C. M. Transactions on Computer System, Vol. 2, 2, pp. 93–122.Google Scholar
  2. P. BILLINGSLEY (1979) Probability and measure Wiley, New York.Google Scholar
  3. J. CAMPOS, M. SILVA (1990) Steady state performance evaluation of Totally Open Systems of Markovian Sequential. Processes. in ‘Decentralized Systems', M. Cosnard, C. Girault eds., pp. 427–438, North-Holland, Amsterdam.Google Scholar
  4. G. FLORIN, S. NATKIN (1986) One-Place Unbounded Stochastic Petri Nets: Ergodic Criteria and Steady-State Solutions. J. Syst. Software, Vol. 1 pp. 103–115.Google Scholar
  5. G. FLORIN, S. NATKIN (1989) Necessary and sufficient ergodicity condition for open synchronized queuing networks. IEEE Trans. on Software Engineering Vol. 15, 4, pp. 367–380.Google Scholar
  6. E. GELENBE, G. PUJOLLE (1982) Introduction aux réseaux de files d' attente. Eyrolles, Paris.Google Scholar
  7. J. R. JACKSON (1963) Jobshop-like queuing systems Management Science Vol. 10, pp. 131–142.Google Scholar
  8. M. K. MOLLOY (1982) Performance analysis using stochastic Petri nets IEEE Transactions on Computers Vol. C-31, 9, pp. 913–917.Google Scholar
  9. J. NEVEU (1975) Discrete-Parameter Martingales. North-Holland, Amsterdam.Google Scholar
  10. A. G. PAKES (1969) Some conditions for Ergodicity and Recurrence of Markov Chains. Opns. Res. Vol. 17, pp. 1058–1061.Google Scholar
  11. J. L. PETERSON (1981) Petri Net Theory and the modelling of systems Prentice Hall, New-Jersey.Google Scholar
  12. W. REISIG (1982) Deterministic buffer synchronization of sequential processes. Acta Inf., 18, pp. 117–134.Google Scholar
  13. A.N. SHIRYAYEV (1984) Probability Springer, New-York.Google Scholar
  14. M. SILVA (1985) Las redes de Petri en la automática y la informática Editorial AC, Madrid.Google Scholar
  15. Y. SOUISSI, N. BELDICEANU (1988) Deterministic systems of sequential processes: theory and tools. in’ Concurrency 88', F. H. Vogt ed., pp. 380–400. Lecture Notes in Comp. Sci. 335, Springer, New York.Google Scholar
  16. W. SZPANKOWSKI (1988) Stability Conditions for Multidimensional Queuing Systems with Computer Applications. Opns. Res. Vol. 36 pp. 944–957.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • R. Gouet
    • 1
  • F. Plo
    • 2
  • M. San Miguel
    • 2
  • B. Ycart
    • 3
  1. 1.Departamento de Ingenieria MatemáticaUniversidad de ChileSantiagoChile
  2. 2.Departamento de Métodos EstadísticosUniversidad de ZaragozaZaragozaSpain
  3. 3.Laboratoire de Mathématiques Appliquées, U.A. CNRS 1204Faculté des Sciences, Av. de l'UniversitéPauFrance

Personalised recommendations