Advertisement

Autonomous and timed continuous Petri nets

  • René David
  • Hassane Alla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 674)

Abstract

Since an autonomous continuous Petri net is presented as a limit case of autonomous discrete Petri nets, this new model thus preserves most of the properties of classical Petri nets.

A timed continuous Petri net, with firing speeds associated with transitions, can be obtained from a timed discrete Petri net by means of an approximation. Two kinds of approximations are proposed, with constant firing speeds and variable firing speeds, respectively. These models are compared.

Keywords

Petri nets continuous PN discrete PN real marking quantity of firing firing speed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. K. MOLLOY, Fast Bounds for Stochastic Petri Nets, Intrenational Workshop on Timed Petri Nets, Torino (I), July 1985, pp. 244–249.Google Scholar
  2. [2]
    D. DUBOIS, J.-P. FORESTIER, Productivité et en-cours moyens d'un ensemble de deux machines séparées par un stock, Revue RAIRO Automatique, vol. 16, n∘2, 1982, pp. 105–132.Google Scholar
  3. [3]
    R. DAVID, X. XIE, Y. DALLERY, Properties of Continuous Models of Transfer lines with Unreliable machines and Finite Buffers, Technical report L.A.G. n∘ 88-50, May 1988.Google Scholar
  4. [4]
    R. DAVID, H. ALLA, Continuous Petri Nets, 8th European Workshop on Application and Theory of Petri Nets, Saragosse (E), June 1987, pp. 275–294.Google Scholar
  5. [5]
    R. DAVID, H. ALLA, Du Grafcet aux réseaux de Petri, Editions Hermès, Paris, 1989.Google Scholar
  6. [6]
    S. B. GERSHWIN, I. C. SCHICK, Continuous Model of an Unreliable Two — Stage Material Flow System With a Finite Interstage Buffer, Technical report MIT LIDS — R-1032, September 1980.Google Scholar
  7. [7]
    J. SIFAKIS, Use of Petri Nets for Performance Evaluation, in “Measuring, Modelling and Evaluating Computer Systems”, H. Beilner and E. Gelenbe (Eds), North-Holland Publ. Co, 1977, pp. 75–93.Google Scholar
  8. [8]
    C. RAMCHANDANI, Analysis of Asynchronous Concurrent Systems by Timed Petri Nets, Ph. D., MIT, September 1973.Google Scholar
  9. [9]
    P. CHRETIENNE, Les réseaux de Petri temporises, Thèse d'Etat, Université Paris VI, June 1983.Google Scholar
  10. [10]
    H. ALLA, R. DAVID, Modelling of Production Systems by Continuous Petri Nets, 3rd International Conference on CAD/CAM, CARS & FOF88, Detroit (USA), August 1988, pp. 344–348.Google Scholar
  11. [11]
    H. ALLA, R. DAVID, Modélisation de production/gestion par réseaux de Petri continus, Congrès Afcet-Automatique, Grenoble, octobre 1988, pp. 106–115.Google Scholar
  12. [12]
    J. LE BAIL, H. ALLA and R. DAVID, Hybrid Petri Nets, Note interne L.A.G. n∘ 89-53, Grenoble, juin 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • René David
    • 1
  • Hassane Alla
    • 1
  1. 1.Laboratoire d'Automatique de Grenoble, ENSIEGInstitut National Polytechnique de Grenoble -Unité de Recherche Associée au CNRSSaint-Martin-d'HèresFrance

Personalised recommendations