Advertisement

Generative families of positive invariants in Coloured nets sub-classes

  • J. M. Couvreur
  • S. Haddad
  • J. F. Peyre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 674)

Abstract

In Petri nets and high-level nets, positive flows provide additional informations to the ones given by the flows. For instance with the help of positive flows one decides the structural boundeness of the nets and one detects the structural implicit places. Up to now, no computation of positive flows has been developed for coloured nets. In this paper, we present a computation of positive flows for two basic families of coloured nets: unary regular nets and unary predicate/transition nets. At first we show that these two computations are reducible to the resolution of the parametrized equation A.X1 = ... = A.Xn where A is a matrix, Xi, the unknowns are vectors and n is the parameter. Then we present an algorithm to solve this equation. At last we show how the solutions of the parametrized equation can be used to solve the complete equations system for unary regular nets and unary predicate/transition nets.

Keywords

Coloured nets structural analysis positive flows computation Farkas' algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aba64]
    J.ABADIE Méthode de Fourier et méthode duale pour les systèmes d'inéquations linéaires”, communication invitée au ”Mathematical Programming Symposium, Londres 64. Note E.D.F. N. HR 5.759/3, June 5 1964.Google Scholar
  2. [Bra83]
    G.W. BRAMS Réseaux de Petri. Théorie et pratique. Masson éditeur, Paris, 1983.Google Scholar
  3. [CHP90]
    J.M. COUVREUR, S. HADDAD, J.F. PEYRE Résolution paramétrée de familles de systèmes linéaires, RAIRO-Operations Research, vol. 26, n∘2, AFCET-Gauthier-Villars, Paris 1992, p. 183–206.Google Scholar
  4. [Col89]
    J.M. COLOM, M. SILVA Improving the linearly based Characterization of P/T nets. Advances in Petri nets 1990. L.N.C.S. 483, G.Rozenberg (eds.). Springer-Verlag, pp. 113–145Google Scholar
  5. [Col89]
    J.M. Colom, M. Silva Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal P-semiflows. Advances in Petri nets 1990. L.N.C.S. 483, G.Rozenberg (eds.). Springer-Verlag, pp. 79–112Google Scholar
  6. [Cou90]
    J.M. COUVREUR The general computation of flows for coloured nets. Proceeding of the 11th International Conference on Application and Theory of Petri Nets. Paris. June 90. pp 204–223Google Scholar
  7. [Far02]
    J.FARKAS Theorie der einfachen Ungleichungen Journal fur die reine und andgewandte Mathematik, 124, pp. 1–27 1902.Google Scholar
  8. [Fou27]
    J.FOURIER Histoire de l'Académie Royale des Sciences, Analyse des travaux pendant l'année 1824, Partie Mathématique, Paris 1827 pp. xlvij–lv.Google Scholar
  9. [Gen8l]
    H.J. GENRICH, K. LAUTENBACH System modelling with high-level Petri nets, Theoretical Computer Science 13, 1981,pp 103–136.Google Scholar
  10. [Gen83]
    H.J. GENRICH, K. LAUTENBACH S-Invariance in predicate transition nets. Informatik Fachberichte 66: Application and Theory of Petri Nets. A.Pagnoni, G.Rozenberg (eds.). Springer-Verlag, pp. 98–111Google Scholar
  11. [Had86]
    S. HADDAD, C. GIRAULT Algebraic structure of flows of a regular net, Oxford England, June 1986, Advances in Petri nets, G.Rozenberg ed., L.N.C.S. N. 266, G.Rozenberg ed., Springer Verlag, 1987, pp 73–88.Google Scholar
  12. [Had87]
    S. HADDAD Une catégorie régulière de réseau de Petri de haut niveau: définition, propriétés et réductions. Application à la validation de systèmes distribués, Thèse de l'Université Pierre et Marie Curie, Paris, juin 1987.Google Scholar
  13. [Had88]
    S. HADDAD, J.M. COUVREUR Towards a general and powerful computation of flows for parametrized coloured nets. 9th European Workshop on Application and Theory of Petri Nets. Vol.11. Venice (Italy). June 1988.Google Scholar
  14. [Jen81]
    K. JENSEN Coloured Petri nets and the invariant method. Theorical Computer Science 14. North Holland Publ. Co.pp. 317–336Google Scholar
  15. [Jen86]
    K. JENSEN Coloured Petri nets: Central models and their properties. Advances in Petri nets, G.Rozenberg ed.,L.N.C.S. N. 254, Springer-Verlag Part I. Bad Honnef, September 1986. pp 248–299.Google Scholar
  16. [Mem80]
    G.MEMMI and G.ROUCAIROL Linear algebra in net theory. Proc. of Advanced course on general Net Theory of Processes and Systems Hambourg 1979, L.N.C.S. 84, W.Brauer (Ed.), Springer Verlag (1980)Google Scholar
  17. [Mem83]
    G. MEMMI Méthodes d'analyse de réseaux de Petri, réseaux à files et applications aux systèmes temps réel, Thèse d'état, Université Pierre et Marie Curie, Paris, juin 1983.Google Scholar
  18. [Sil85]
    M. SILVA, J. MARTINEZ, P. LADET, H. ALLA Generalized inverses and the calculation of symbolic invariants for coloured Petri nets, Technique et Science Informatiques, Vol.4 n1, 1985, pp 113–126.Google Scholar
  19. [Trev86]
    N. TREVE Le calcul d'invariants dans les réseaux à prédicats/transistions unaires. Thèse de l'universitée Paris Sud, Paris 1986.Google Scholar
  20. [Vau84]
    J. VAUTHERIN, G. MEMMI Computation of flows for unary predicates transitions nets, Advances in Petri nets, G.Rozenberg (eds.), L.N.C.S. 188, Springer-Verlag 1984, pp. 455–467.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. M. Couvreur
    • 1
  • S. Haddad
    • 1
  • J. F. Peyre
    • 1
  1. 1.Université Paris VI - C.N.R.S. MASIParis Cedex 05

Personalised recommendations