Advertisement

On a third order differential equation whose differential Galois group is the simple group of 168 elements

  • Michael F. Singer
  • Felix Ulmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 673)

Abstract

In this paper we compute the differential Galois group of a third order linear differential equation whose existence was predicted by F. Klein [9] and whose construction is due to A. Hurwitz [7]. The aim of this paper is to apply the results of [15] in order to prove, starting only with the equation, that the simple group of 168 elements is the the differential Galois group of this equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blichfeld, H. F., Finite collineation groups, University of Chicago Press, 1917Google Scholar
  2. 2.
    Cannon, J. J., An introduction to the group theory language Cayley. In Computational Group Theory, Atkinson, M.D. (ed), New York: Academic Press 1984Google Scholar
  3. 3.
    Fuchs, L., Ueber die linearen Differentialgleichungen zweiter Ordnung, welche algebraische Integrale besitzen, zweite Abhandlung, J. für Math., 85 (1878)Google Scholar
  4. 4.
    Gray, J., Linear differential equations and group theory from Riemann to Poincaré, Boston, Basel, Stuttgart: Birkhäuser 1986Google Scholar
  5. 5.
    Grigor'ev, D. Yu., Complexity of factoring and calculating the GCD of linear ordinary differential operators, J. Symb. Comp., 10 (1990)Google Scholar
  6. 6.
    Halphen, G., Sur une équation différentielle linéaire du troisième ordre, Math. Ann., 24 (1884)Google Scholar
  7. 7.
    Hurwitz, A., Ueber einege besondere homogene lineare Differentialgleichungen, Math. Ann., 26 (1886)Google Scholar
  8. 8.
    Kaplansky, I., Introduction to differential algebra, Paris: Hermann 1957Google Scholar
  9. 9.
    Klein, F., Über die Transformation siebenter Ordnung der elliptischen Funktionen Math. Ann, 14, (1878/79)Google Scholar
  10. 10.
    Poole, E. G. C., Introduction to the Theory of Linear Differential Equations, Dover Publications, Newy York, 1960Google Scholar
  11. 11.
    Schlesinger, L., Handbuch der Theorie der linearen Differentialgleichungen, Leipzig: Teubner 1895Google Scholar
  12. 12.
    Schwarz, F., A Factorization algorithm for linear ordinary differential equations, Proceedings of the 1989 Symposium on Symbolic and Algebraic Computation, ACM 1989Google Scholar
  13. 13.
    Singer, M. F., Liouvillian solutions of n th order linear differential equations, Amer. J. Math., 103 (1981)Google Scholar
  14. 14.
    Singer, M. F., An outline of differential Galois theory, in Computer Algebra and Differential Equations, Ed. E. Tournier, New York: Academic Press 1990Google Scholar
  15. 15.
    Singer, M. F., Ulmer, F., Galois group of second and third order Linear differential equations, Preprint, North Carolina State University (1992)Google Scholar
  16. 16.
    Singer, M. F., Ulmer, F., Liouvillian and algebraic solutions of second and third order Linear differential equations, Preprint, North Carolina State University (1992)Google Scholar
  17. 17.
    Tretkoff, C., Tretkoff, M., Solution of the inverse problem of differential Galois theory in the classical case, Amer. J. Math., 101 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michael F. Singer
    • 1
  • Felix Ulmer
    • 1
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleigh

Personalised recommendations