Energy functions associated with error-correcting codes

  • C. Rentería
  • H. Tapia-Reculas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 673)


A function associated with a linear error-correcting code defined over a finite field with q elements, where q is a power of a prime p, is introduced. This function is a generalization of the energy function associated with a linear block code over the field ℤp as described by Bruck and Blaum in [1]. It is proven to have similar properties. In particular, the Maximum Likelihood Decoding (MLD) problem is shown to be characterized by the maximization of this function.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruck, J., Blaum, M.: Neural Networks, Error-Correcting Codes, and Polynomials over the Binary n-Cube. IIIE Trans. on Inf. Theory, vol. 35, No.5 (1989) 976–987Google Scholar
  2. 2.
    Bruck, J., Sanz, J.: A study of neural networks. Int. J. Intelligent Systems, vol.3 (1988) 59–75Google Scholar
  3. 3.
    Bruck, J., Goodman, J.W.: A generalized convergence theorem for neural networks. IIIE Trans. Inf. Theory, vol.IT-34 (1988) 1089–1092Google Scholar
  4. 4.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. (USA) vol.79 (1986) 269–281Google Scholar
  5. 5.
    Goppa, V.D.: Algebraico-Geometric codes. Math. URSS-Izv 21(1) (1983) 75–91Google Scholar
  6. 6.
    Goppa, V.D.: Geometry and Codes. Mathematics and Its Applications. Kluwer Academic Publishers, (1988)Google Scholar
  7. 7.
    Manin, Y.I., Vlädut, S.G.: Linear codes and modular curves. J.Sov. Math. 30 (6) (1985) 2611–2643Google Scholar
  8. 8.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, New York, (1977)Google Scholar
  9. 9.
    Moreno, C. Algebraic curves over finite fields. Cambridge U. Press, (1991)Google Scholar
  10. 10.
    Peterson, W.W. and Weldon, W., J. Error-Correcting Codes. Cambridge, MA.,MIT Press, (1971)Google Scholar
  11. 11.
    Rentería, C., Tapia-Recillas, H.: A lifting of BCH codes over a hyperelliptic curve. To appear in Marshall Hall Memorial Conference. (J. Wiley & Sons Co.)Google Scholar
  12. 12.
    Rentería, C., Tapia-Recillas, H.; A geometric code on an Artin-Schreier curve. C. Numerantium, vol.84, Dec.1991, 3–7, Winnipeg, CanadaGoogle Scholar
  13. 13.
    Stichtenoth, H.: Self-dual Goppa codes. J. of Pure and Applied Algebra 55 (1988) 199–211Google Scholar
  14. 14.
    van Lint, J.H. Introduction to Coding Theory. GTM 86, Springer-Verlag, New York, (1982)Google Scholar
  15. 15.
    van Lint, J.H., van der Geer.: Introduction to Coding Theory and Algebraic Geometry Birkhäuser Verlag, (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • C. Rentería
    • 1
  • H. Tapia-Reculas
    • 2
  1. 1.Escuela Superior de Física y MatemáticasI.P.N.Mexico
  2. 2.Dpto. de MatemáticasU.A.Metropolitana-IMéxico 09340 D.F.Mexico

Personalised recommendations