Advertisement

An operational semantics for the guarded command language

  • Johan J. Lukkien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 669)

Abstract

In [6], Dijkstra and Scholten present an axiomatic semantics for Dijkstra's guarded command language through the notions of weakest precondition and weakest liberal precondition. The informal notion of a computation is used as a justification for the various definitions. In this paper we present an operational semantics in which the notion of a computation is made explicit. The novel contribution is a generalization of the notion of weakest precondition. This generalization supports reasoning about general properties of programs (i.e, not just termination in a certain state).

Keywords

Temporal Logic Strong Solution Operational Semantic Infinite Sequence Sequential Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern, B., Schneider, F.B.: Defining liveness. I.P.L. 21 (1985) 181–185MathSciNetGoogle Scholar
  2. 2.
    Back, R.J.R.: Refinement calculus, part II: parallel and reactive programs. report ser. A, no. 93 (1989) Åbo Akademi FinlandGoogle Scholar
  3. 3.
    Back R.J.R., Sere, K.: Stepwise refinement of action systems. In: Mathematics of program construction (J.L.A. van de Snepscheut (ed)), Springer-Verlag LNCS 375 (1989) 115–138Google Scholar
  4. 4.
    Chandy, K.M., Misra, J.: Parallel programming, a foundation. Addison-Wesley publishing company, Reading 1988Google Scholar
  5. 5.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University Press, Cambridge 1990Google Scholar
  6. 6.
    Dijkstra, E.W., Schölten, C.S.: Predicate calculus and program semantics. Springer-Verlag, New York 1990.Google Scholar
  7. 7.
    Knapp, E., A predicate transformer for progress, I.P.L. 33 (1989/1990) 323–330Google Scholar
  8. 8.
    Kuiper, R.: An operational semantics for bounded nondeterminism equivalent to a denotational one. In: Algorithmic Languages, de Bakker/van Vliet (eds) 373–398, IFIP, North Holland 1981Google Scholar
  9. 9.
    Lukkien, J.J.: Parallel program design and generalized weakest preconditions. PhD thesis, Groningen University The Netherlands 1991Google Scholar
  10. 10.
    Manna, Z., Pnueli, A.: How to cook a temporal proof system for your pet language. Proceedings POPL (ACM) 141–153, Austin 1983Google Scholar
  11. 11.
    Morris, J.M.: Temporal predicate transformers and fair termination. Acta Informatica 27 (1990) 287–313Google Scholar
  12. 12.
    van de Snepscheut, J.L.A., Lukkien, J.J.: Weakest preconditions for progress. Formal Aspects of Computing 4 (1992) 195–236Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Johan J. Lukkien
    • 1
  1. 1.Computer ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations