Directed column-convex polyominoes by recurrence relations

  • Elena Barcucci
  • Renzo Pinzani
  • Renzo Sprugnoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 668)


In the literature most counting problems for directed columnconvex polyominoes are solved by using Schutzenberger's method. In this paper, we use the traditional recurrence relation approach in order to count the number of directed column-convex polyominoes with a given area, the number of their columns and the number of directed columnconvex polyominoes having at most κ cells in the first column. This approach allows us to state a very simple algorithm for the random generation of directed column-convex polyominoes. Furthermore, directed column-convex polyominoes are considered to be structures for storing and retrieving information in a computer, and their average internal path length is then evaluated.


  1. 1.
    E. Barcucci, R. Pinzani, E. Rodella, R. Sprugnoli: A Characterization of Binary Search Networks. In: L. Budach (ed.): Foundamentals of Computation Theory. Lecture Notes in Computer Science 529. Berlin: Springer 1991, pp. 126–135Google Scholar
  2. 2.
    E. Barcucci, R. Pinzani, R. Sprugnoli: Génération Aléatoire des Animaux Dirigés. In: J. Labelle, J.-G. Penaud (eds.): Atelier de Combinatoire Franco-Quebécois. Publications du LACIM. Montréal 1991, pp.17–25Google Scholar
  3. 3.
    E. Barcucci, R. Pinzani, R. Sprugnoli: The Random Generation of Underdiagonal Walks. In: P. Leroux, C. Reutenauer (eds.): Séries Formelles et Combinatoire Algébrique. Publications du LACIM 11. Montréal 1992, pp. 17–32Google Scholar
  4. 4.
    M. P. Delest, S. Dulucq: Enumeration of Directed Column-convex Animals with Given Perimeter and Area. Rapport LaBRI 87-15. Université de Bordeaux I 1987Google Scholar
  5. 5.
    T. Hickey, J. Cohen: Uniform Random Generation of Strings in a Context-Free Language. SIAM J. Comput. 12, 645–655 (1983)CrossRefGoogle Scholar
  6. 6.
    D. E. Knuth: The Art of Computer Programming, Vol. I–III. Addison-Wesley, Reading, Ma, 1968–1973Google Scholar
  7. 7.
    X. G. Viennot: A Survey of Polyomino Enumeration. In: P. Leroux, C. Reutenauer (eds.): Séries Formelles et Combinatoire Algébrique. Publications du LACIM 11. Montréal 1992, pp. 399–420Google Scholar
  8. 8.
    T. Yuba, M. Hoshi: Binary Search Networks: a New Method for Key Searching. Information Processing Letters 24, 59–65 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Elena Barcucci
    • 1
  • Renzo Pinzani
    • 1
  • Renzo Sprugnoli
    • 1
  1. 1.Dipartimento di Sistemi e InformaticaFirenzeItaly

Personalised recommendations