Advertisement

Refinement of rule sets with JoJo

  • Dieter Fensel
  • Markus Wiese
Position Papers Inductive Learning and Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 667)

Abstract

In the paper we discuss a new approach for learning classification rules from examples. We sketch out the algorithm JoJo and its extension to a four step procedure which can be used to incrementally refine a set of classification rules. Incorrect rules are refined, the entire rule set is completed, redundant rules are deleted and the rule set can be minimized. The first two steps are done by applying JoJo which searches through the lattice of rules by generalization and specialization.

References

  1. 1.
    A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Ocam's Razor, In Information Processing Letters, vol 24, 1987, pp. 377–380.Google Scholar
  2. 2.
    J. Cendrowska: PRISM: An algorithm for inducing modular rules. In Int. J. Man-Machine Studies, vol. 27, 1987, pp. 349–370.Google Scholar
  3. 3.
    P. Clark and R. Boswell: Rule Induction with CN2: Some recent Improvements. In Proceedings of the European Workshop on Machine Learning (EWSLV1), March 6–8, Porto, Portugal, 1991, pp. 151–163.Google Scholar
  4. 4.
    C. Decaesteckert: Incremental Classification: A multidisciplinary viewpoint. In Proceedings of the Conference Symbolic-Numeric Data Analysis and Learning, Versailles, September 18–20, 1991, pp. 283–295.Google Scholar
  5. 5.
    D. Fensel and J. Klein: A new approach to rule induction and pruning. In Proceedings of the 3rd International Conference on Tools for Artificial Intelligence (ICTAI'91), Palo Alto, November 11–13, 1991.Google Scholar
  6. 6.
    D. Fensel and J. Klein: Solving a Generalization Task by Generalization: RELAX, H-RE-LAX, and I-RELAX. Three Algorithms for Rule Induction and Pruning. In Forschungsbericht des Institut für Angewandte Informatik und Formale Beschreibungsverfahren der Universität Karlsruhe (TH), no 235, Januar 1992.Google Scholar
  7. 7.
    D. Fensel: JoJo. In research report, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, no 254, January 1993.Google Scholar
  8. 8.
    D. Fensel and M. Pechowski: An Evaluation of B-RELAX and JoJo. In research report, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, March 1993.Google Scholar
  9. 9.
    D. Fensel, J. Klein, and U. Neubronner: RJ — An Environment for Learning from Example. In research report, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, February 1993.Google Scholar
  10. 10.
    J. H. Gennari, P. Langley, and D. Fisher: Model of Incremental Concept Formation. In Artificial Intelligence, vol. 40, no. 1–3, September, 1989, pp. 11–62.Google Scholar
  11. 11.
    T.T.T. Huyen and H.T. Bao: A method for generating rules from examples and its application. In Proceedings of the Conference Symbolic-Numeric Data Analysis and Learning, Versailles, September 18–20, 1991, pp.493–504.Google Scholar
  12. 12.
    E. J. McCluskey: Minimizing of Boolean Functions. In Bell System Tech. Journal, vol. 35, no. 5, November 1956, pp. 1417–1444.Google Scholar
  13. 13.
    T.M. Mitchell: Generalization as Search. In B. Webber et.al. (eds), Readings in Artificial Intelligence, Tioga Publishinh Co., Palo Alto, 1981.Google Scholar
  14. 14.
    R. S. Michalski, I. Mozetic, J. Hong and N. Lavrac: The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains. In Proceedings of the 5th National Conference on AI (AAAI-86), Philadelphia, PA, August 11–15, pp. 1041–1045, 1986.Google Scholar
  15. 15.
    J.R. Quinlan: Simplifying decision trees. In Gaines et.al. (eds.), Knowledge-Based Systems, vol. 1, Academic Press Ltd, London, 1988, pp. 239–252.Google Scholar
  16. 16.
    J. R. Quinlan: Learning Logical Definitions from Relations. In Machine Learning, vol 5, no 3, 1990, pp. 239–266.Google Scholar
  17. 17.
    J.R. Quinlan: Probabilistic Decision Trees. In Machine Learning. An Artificial Intelligence Approach, vol. III, Y. Kodratoff et.al. (eds.), Morgan Kaufmann Publisher, San Mateo, CA, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Dieter Fensel
    • 1
  • Markus Wiese
    • 1
  1. 1.Institut für Angewandte Informatik und Formale BeschreibungsverfahrenUniversity of KarlsruheKarlsruheGermany

Personalised recommendations