Skip to main content

PVA-Iodine complexes: Formation, structure, and properties

  • Chapter
  • First Online:
Structure in Polymers with Special Properties

Part of the book series: Advances in Polymer Science ((POLYMER,volume 108))

Abstract

The PVA-Iodine complexes formed in PVA films soaked in iodine-KI aqueous solutions without boric acid are studied from the structural point of view. First, iodine soaking at comparatively low iodine concentrations is studied where iodine sorption takes place mostly in the amorphous phase. There, our interest is concentrated on the following problems: What happens in PVA films during iodine soaking? How does the solid structure of PVA films affect the formation and properties of the complex? How does the chain extension affect the complex formation and properties? What is the structure of the complex formed in the amorphous phase? Then iodine soaking at high iodine concentrations is studied where iodine sorption takes place in the crystal phase as well as in the amorphous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Colin, Gaultier de Clouby H (1814) Ann Chim 90: 87; (1814) Gilb Ann 48: 297

    Google Scholar 

  2. Freudenberg K, Schaaf E, Dumpert G, Ploetz T (1939) Naturwissenschaften 22: 850

    Google Scholar 

  3. Arimoto H (1962) Kobunshi Kagaku 19: 101

    Google Scholar 

  4. Scholtan W (1954) Makromol Chem 11: 131

    Google Scholar 

  5. Herrmen WO, Haehnel W (1927) Ber Dtsch Chem Ges 60: 1658

    Google Scholar 

  6. Staudinger H, Frey K, Starck W (1927) Ber Dtsch Chem Ges 60: 1782

    Google Scholar 

  7. Land EH (1951) J Opt Soc Am 41: 957

    Google Scholar 

  8. Tanizaki Y (1957) Bull Chem Soc Japan 30: 935

    Google Scholar 

  9. Munakata H, Ichikawa R (1978) Sen-i Gakkaishi 34: 288; Moriuchi T (1984) Kobunshi 33: 830

    Google Scholar 

  10. Kikukawa K, Nozakura S, Murahashi S (1971) Polym J 2: 212

    Google Scholar 

  11. Kikukawa K, Nozàkura S, Murahashi S (1971) Polym J 3: 52

    Google Scholar 

  12. Patent publication 206402-91 issued in Japan (Sep. 9. 1991)

    Google Scholar 

  13. Imai K, Matsumoto M (1961) J Polym Sci 55: 335

    Google Scholar 

  14. Matsuzawa S, Yamaura K, Noguchi H (1974) Makromol Chem 175: 31

    Google Scholar 

  15. Choi YS, Miyasaka K (submitted to J Appl Polym Sci)

    Google Scholar 

  16. Hayashi S, Nakano C, Motoyama T (1963) Kobunshi Kagaku 20: 303

    Google Scholar 

  17. Hayashi S, Tanabe Y, Hojo N (1977) Makromol Chem 178: 1679

    Google Scholar 

  18. Hayashi S, Kabayashi M, Shirai H, Hojo N (1978) Makromol Chem 179: 1397

    Google Scholar 

  19. Hayashi S, Takayama M, Kawamura C (1970) Kogyo Kagaku Zasshi 73: 178

    Google Scholar 

  20. Hayashi S, Takayama M, Kawamura C (1970) Kogyo Kagaku Zasshi 73: 412

    Google Scholar 

  21. Sakuramachi H, Choi YS, Miyasaka K (1990) Polym J 22: 638

    Google Scholar 

  22. Gallay W (1936) Can J Res 14B: 105

    Google Scholar 

  23. Zwick MM (1965) J Appl Polym Sci 9: 2393

    Google Scholar 

  24. Tebelev LG, Milkulskii GF, Korchagina YP, Glikman SA (1965) Vysokomol Soedin 7: 1231

    Google Scholar 

  25. Oishi Y, Miyasaka K (1986) Polym J 18: 307

    Google Scholar 

  26. Yokota T, Kimura Y (1984) Makromol Chem 185: 749

    Google Scholar 

  27. West CD (1949) J Chem Phys 17: 219

    Google Scholar 

  28. Saito S, Okutama H, Kishimoto H, Fujiyama T (1955) Kolloid ZZ Polym 144: 41

    Google Scholar 

  29. Pritchard JG, Akintola DA (1972) Talanta 19: 877

    Google Scholar 

  30. Deuel H, Neukom H (1949) Makromol Chem 3: 13

    Google Scholar 

  31. Shibayama M, Sato M, Kimura Y, Fujiwara H, Nomura S (1988) Polymer 29: 336

    Google Scholar 

  32. Voelkel J, Szydlowska W (1981) Makromol Chem 182: 225

    Google Scholar 

  33. West CD (1947) J Chem Phys 15: 689; (1951) Makromol Chem 19: 1432

    Google Scholar 

  34. Haisa M, Itami H (1957) J Phys Chem 61: 817

    Google Scholar 

  35. Heyde ME, Rimai L, Kilponen RG, Gill D (1972) J Am Chem Soc 94: 5222

    Google Scholar 

  36. Inagaki F, Harada I, Shimanouchi T, Tasumi M (1972) Bull Chem Soc Jpn 45: 3384

    Google Scholar 

  37. Teitelbaum RC, Ruby SL, Marks TJ (1980) J Am Chem Soc 102: 3322

    Google Scholar 

  38. Rundle RE, Foster JF, Baldwin RR (1944) J Am Chem Soc 66: 2116; Rundle RE, Baldvoin RR (1943) J Am Chem Soc 65: 554; Rundle RE, French D (1943) J Am Chem Soc 65: 558

    Google Scholar 

  39. Handa T, Yajima H (1979) Biopolymers 18: 873; (1980) 19: 723; (1980) 19: 1723

    Google Scholar 

  40. Saenger W (1984) Naturwissenschaften 71: 31

    Google Scholar 

  41. Zwick MM (1966) J Polym Sci Part A-1 4: 1642

    Google Scholar 

  42. Yokota T, Kimura Y (1985) Makromol Chem 186: 549

    Google Scholar 

  43. Yokota T, Kimura Y (1986) Makromol Chem Rapid Comm 7: 249

    Google Scholar 

  44. Yokota T, Kimura Y (1989) Makromol Chem 190: 939

    Google Scholar 

  45. Hayashi S, Takizawa K (1968) Kogyo Kagaku Zasshi 71: 101

    Google Scholar 

  46. Kojima Y, Furuhata K, Miyasaka K (1985) J Appl Polym Sci 30: 1617

    Google Scholar 

  47. Oishi Y, Miyasaka K (1987) Polym J 19: 331

    Google Scholar 

  48. Hess VK, Steinman R, Kiessig H, Avisiers I (1957) Kolloid Z 153: 128

    Google Scholar 

  49. Kojima Y, Furuhata K, Miyasaka K (1983) J Appl Polym Sci 28: 2401

    Google Scholar 

  50. Oishi Y, Yamamoto H, Miyasaka K (1987) Polym J 19: 1261

    Google Scholar 

  51. Choi YS, Oishi Y, Miyasaka K (1990) Polym J 22: 601

    Google Scholar 

  52. Abitz W, Gerngross O, Herrmann K (1930) Naturwissensshaften 18: 754; (1903) Biochem 228: 409

    Google Scholar 

  53. Hearle JWS (1968) Fiber structure, Butterworth, p 214

    Google Scholar 

  54. Keller A (1957) Phil Mag 2: 1171

    Google Scholar 

  55. Hosemann R (1962) Polymer 3: 349

    Google Scholar 

  56. Flory PJ (1953) Principles of polymer chemistry. Cornel University Press, Ithaca, New York, chap 13

    Google Scholar 

  57. Tanaka M, Mizutani K (1979) Angew Makromol Chem 78: 211

    Google Scholar 

  58. Hayashi S, Kawamura C, Takayama T (1970) Bull Chem Soc Jpn 43: 537

    Google Scholar 

  59. Sarles LR, Cottos RM (1958) Phys Rev 111: 853

    Google Scholar 

  60. Choi YS, Miyasaka K (1900) Polym Preprints Jpn 39: 2436

    Google Scholar 

  61. Kim KH, Ieda Y, Miyasaka K (Submitted to Polym J)

    Google Scholar 

  62. Choi YS, Miyasaka K (1991) Polym J 23: 977

    Google Scholar 

  63. R Hosemann, Bagchi SN (1962) Direct analysis of diffraction by matter. North Holland, Amsterdam, p 239

    Google Scholar 

  64. Herbstein FH, Kaftory M, Kapon M, Saenger W (1980) Z Kristallogr 154: 11

    Google Scholar 

  65. Ueda S, Kimura T (1958) Kobunshi Kagaku 15: 243

    Google Scholar 

  66. Danno T, Miyasaka K, Ishikawa K (1983) J Polym Sci, Phys Edn 21: 1527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -G. Zachmann

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Miyasaka, K. (1993). PVA-Iodine complexes: Formation, structure, and properties. In: Zachmann, H.G. (eds) Structure in Polymers with Special Properties. Advances in Polymer Science, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56579-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-56579-5_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56579-6

  • Online ISBN: 978-3-540-47594-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics