Advertisement

PVA-Iodine complexes: Formation, structure, and properties

  • Keizo Miyasaka
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 108)

Abstract

The PVA-Iodine complexes formed in PVA films soaked in iodine-KI aqueous solutions without boric acid are studied from the structural point of view. First, iodine soaking at comparatively low iodine concentrations is studied where iodine sorption takes place mostly in the amorphous phase. There, our interest is concentrated on the following problems: What happens in PVA films during iodine soaking? How does the solid structure of PVA films affect the formation and properties of the complex? How does the chain extension affect the complex formation and properties? What is the structure of the complex formed in the amorphous phase? Then iodine soaking at high iodine concentrations is studied where iodine sorption takes place in the crystal phase as well as in the amorphous phase.

Keywords

Amorphous Phase Iodine Concentration Resonance Raman Spectrum Interchain Hydrogen Bond High Iodine Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Colin, Gaultier de Clouby H (1814) Ann Chim 90: 87; (1814) Gilb Ann 48: 297Google Scholar
  2. 2.
    Freudenberg K, Schaaf E, Dumpert G, Ploetz T (1939) Naturwissenschaften 22: 850Google Scholar
  3. 3.
    Arimoto H (1962) Kobunshi Kagaku 19: 101Google Scholar
  4. 4.
    Scholtan W (1954) Makromol Chem 11: 131Google Scholar
  5. 5.
    Herrmen WO, Haehnel W (1927) Ber Dtsch Chem Ges 60: 1658Google Scholar
  6. 6.
    Staudinger H, Frey K, Starck W (1927) Ber Dtsch Chem Ges 60: 1782Google Scholar
  7. 7.
    Land EH (1951) J Opt Soc Am 41: 957Google Scholar
  8. 8.
    Tanizaki Y (1957) Bull Chem Soc Japan 30: 935Google Scholar
  9. 9.
    Munakata H, Ichikawa R (1978) Sen-i Gakkaishi 34: 288; Moriuchi T (1984) Kobunshi 33: 830Google Scholar
  10. 10.
    Kikukawa K, Nozakura S, Murahashi S (1971) Polym J 2: 212Google Scholar
  11. 11.
    Kikukawa K, Nozàkura S, Murahashi S (1971) Polym J 3: 52Google Scholar
  12. 12.
    Patent publication 206402-91 issued in Japan (Sep. 9. 1991)Google Scholar
  13. 13.
    Imai K, Matsumoto M (1961) J Polym Sci 55: 335Google Scholar
  14. 14.
    Matsuzawa S, Yamaura K, Noguchi H (1974) Makromol Chem 175: 31Google Scholar
  15. 15.
    Choi YS, Miyasaka K (submitted to J Appl Polym Sci)Google Scholar
  16. 16.
    Hayashi S, Nakano C, Motoyama T (1963) Kobunshi Kagaku 20: 303Google Scholar
  17. 17.
    Hayashi S, Tanabe Y, Hojo N (1977) Makromol Chem 178: 1679Google Scholar
  18. 18.
    Hayashi S, Kabayashi M, Shirai H, Hojo N (1978) Makromol Chem 179: 1397Google Scholar
  19. 19.
    Hayashi S, Takayama M, Kawamura C (1970) Kogyo Kagaku Zasshi 73: 178Google Scholar
  20. 20.
    Hayashi S, Takayama M, Kawamura C (1970) Kogyo Kagaku Zasshi 73: 412Google Scholar
  21. 21.
    Sakuramachi H, Choi YS, Miyasaka K (1990) Polym J 22: 638Google Scholar
  22. 22.
    Gallay W (1936) Can J Res 14B: 105Google Scholar
  23. 23.
    Zwick MM (1965) J Appl Polym Sci 9: 2393Google Scholar
  24. 24.
    Tebelev LG, Milkulskii GF, Korchagina YP, Glikman SA (1965) Vysokomol Soedin 7: 1231Google Scholar
  25. 25.
    Oishi Y, Miyasaka K (1986) Polym J 18: 307Google Scholar
  26. 26.
    Yokota T, Kimura Y (1984) Makromol Chem 185: 749Google Scholar
  27. 27.
    West CD (1949) J Chem Phys 17: 219Google Scholar
  28. 28.
    Saito S, Okutama H, Kishimoto H, Fujiyama T (1955) Kolloid ZZ Polym 144: 41Google Scholar
  29. 29.
    Pritchard JG, Akintola DA (1972) Talanta 19: 877Google Scholar
  30. 30.
    Deuel H, Neukom H (1949) Makromol Chem 3: 13Google Scholar
  31. 31.
    Shibayama M, Sato M, Kimura Y, Fujiwara H, Nomura S (1988) Polymer 29: 336Google Scholar
  32. 32.
    Voelkel J, Szydlowska W (1981) Makromol Chem 182: 225Google Scholar
  33. 33.
    West CD (1947) J Chem Phys 15: 689; (1951) Makromol Chem 19: 1432Google Scholar
  34. 34.
    Haisa M, Itami H (1957) J Phys Chem 61: 817Google Scholar
  35. 35.
    Heyde ME, Rimai L, Kilponen RG, Gill D (1972) J Am Chem Soc 94: 5222Google Scholar
  36. 36.
    Inagaki F, Harada I, Shimanouchi T, Tasumi M (1972) Bull Chem Soc Jpn 45: 3384Google Scholar
  37. 37.
    Teitelbaum RC, Ruby SL, Marks TJ (1980) J Am Chem Soc 102: 3322Google Scholar
  38. 38.
    Rundle RE, Foster JF, Baldwin RR (1944) J Am Chem Soc 66: 2116; Rundle RE, Baldvoin RR (1943) J Am Chem Soc 65: 554; Rundle RE, French D (1943) J Am Chem Soc 65: 558Google Scholar
  39. 39.
    Handa T, Yajima H (1979) Biopolymers 18: 873; (1980) 19: 723; (1980) 19: 1723Google Scholar
  40. 40.
    Saenger W (1984) Naturwissenschaften 71: 31Google Scholar
  41. 41.
    Zwick MM (1966) J Polym Sci Part A-1 4: 1642Google Scholar
  42. 42.
    Yokota T, Kimura Y (1985) Makromol Chem 186: 549Google Scholar
  43. 43.
    Yokota T, Kimura Y (1986) Makromol Chem Rapid Comm 7: 249Google Scholar
  44. 44.
    Yokota T, Kimura Y (1989) Makromol Chem 190: 939Google Scholar
  45. 45.
    Hayashi S, Takizawa K (1968) Kogyo Kagaku Zasshi 71: 101Google Scholar
  46. 46.
    Kojima Y, Furuhata K, Miyasaka K (1985) J Appl Polym Sci 30: 1617Google Scholar
  47. 47.
    Oishi Y, Miyasaka K (1987) Polym J 19: 331Google Scholar
  48. 48.
    Hess VK, Steinman R, Kiessig H, Avisiers I (1957) Kolloid Z 153: 128Google Scholar
  49. 49.
    Kojima Y, Furuhata K, Miyasaka K (1983) J Appl Polym Sci 28: 2401Google Scholar
  50. 50.
    Oishi Y, Yamamoto H, Miyasaka K (1987) Polym J 19: 1261Google Scholar
  51. 51.
    Choi YS, Oishi Y, Miyasaka K (1990) Polym J 22: 601Google Scholar
  52. 52.
    Abitz W, Gerngross O, Herrmann K (1930) Naturwissensshaften 18: 754; (1903) Biochem 228: 409Google Scholar
  53. 53.
    Hearle JWS (1968) Fiber structure, Butterworth, p 214Google Scholar
  54. 54.
    Keller A (1957) Phil Mag 2: 1171Google Scholar
  55. 55.
    Hosemann R (1962) Polymer 3: 349Google Scholar
  56. 56.
    Flory PJ (1953) Principles of polymer chemistry. Cornel University Press, Ithaca, New York, chap 13Google Scholar
  57. 57.
    Tanaka M, Mizutani K (1979) Angew Makromol Chem 78: 211Google Scholar
  58. 58.
    Hayashi S, Kawamura C, Takayama T (1970) Bull Chem Soc Jpn 43: 537Google Scholar
  59. 59.
    Sarles LR, Cottos RM (1958) Phys Rev 111: 853Google Scholar
  60. 60.
    Choi YS, Miyasaka K (1900) Polym Preprints Jpn 39: 2436Google Scholar
  61. 61.
    Kim KH, Ieda Y, Miyasaka K (Submitted to Polym J)Google Scholar
  62. 62.
    Choi YS, Miyasaka K (1991) Polym J 23: 977Google Scholar
  63. 63.
    R Hosemann, Bagchi SN (1962) Direct analysis of diffraction by matter. North Holland, Amsterdam, p 239Google Scholar
  64. 64.
    Herbstein FH, Kaftory M, Kapon M, Saenger W (1980) Z Kristallogr 154: 11Google Scholar
  65. 65.
    Ueda S, Kimura T (1958) Kobunshi Kagaku 15: 243Google Scholar
  66. 66.
    Danno T, Miyasaka K, Ishikawa K (1983) J Polym Sci, Phys Edn 21: 1527Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Keizo Miyasaka
    • 1
  1. 1.Department of Organic and Polymeric MaterialsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations