Advertisement

Partially commutative Lyndon words

  • D. Krob
  • P. Lalonde
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 665)

Keywords

Conjugacy Class Total Order Free Monoid Commutative Monoids Standard Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CARTIER P., FOATA D., Problèmes combinatoires de commutation et de réarrangements, Lect. Notes in Math., 85, Springer, 1969Google Scholar
  2. [2]
    CHEN K.T., FOX R.H., LYNDON R.C., Free differential calculus IV: The quotient groups of the lower central series, Ann. Math., 68, pp. 81–95, 1958Google Scholar
  3. [3]
    CHOFFRUT C., Monoïdes partiellement commutatifs libres, LITP Report 86-20, Paris, 1986Google Scholar
  4. [4]
    CROCHEMORE M., String-matching on ordered alphabets, Theor. Comput. Sci., 92, pp. 33–47, 1992Google Scholar
  5. [5]
    CROCHEMORE M., PERRIN D., Two-way string matching, J. of the Assoc. of Comput. Machin., 38(3), pp. 651–675, 1991Google Scholar
  6. [6]
    DIEKERT V., Combinatorics on traces, Lect. Notes in Cpmut. Sci., 454, Springer, 1990Google Scholar
  7. [7]
    DUBOC C., Commutations dans les monoïdes libres: un cadre théorique pour l'étude du parallélisme, Thèse d'Université, Université de Rouen, 1986Google Scholar
  8. [8]
    DUBOC C., On some equations in free partially commutative monoids, Theor. Comput. Sci., 46, pp. 159–174, 1986Google Scholar
  9. [9]
    DUCHAMP G., KROB D., Lazard's factorizations of free partially commutative monoids, [in “Proceedings of 18th ICALP”], Lect. Notes in Comput. Sci, 510, pp. 242–253, Springer, 1991Google Scholar
  10. [10]
    DUCHAMP G., KROB D., Factorisations du monoïde partiellement commutatif libre, C.R.A.S., Série 1, 312(1), pp. 189–192, 1991Google Scholar
  11. [11]
    DUCHAMP G., KROB D., The Free Partially Commutative Lie Algebra: Bases and Ranks, to appear in Adv. in Math.Google Scholar
  12. [12]
    DUVAL J.P., Factorizing words over an ordered alphabet, Journ. of Algorithms, 4, pp. 363–381, 1983Google Scholar
  13. [13]
    KOBAYASHI Y., Lyndon traces and shuffle algebras, preprint, 1992Google Scholar
  14. [14]
    LALONDE P., Contribution à l'étude des empilements, Thèse, Publications du LACIM, 4, Montréal, 1991Google Scholar
  15. [15]
    LALONDE P., Lyndon Heaps: an Analogue of Lyndon Words in Free Partially Commutative Monoids, submitted.Google Scholar
  16. [16]
    LALONDE P., Bases de Lyndon des algèbres de Lie libres partiellement commutatives, submitted.Google Scholar
  17. [17]
    LOTHAIRE M., Combinatorics on words, Encyclopedia of Maths., 17, Addison Wesley, Reading, 1983Google Scholar
  18. [18]
    PERRIN D., Partial commutations, [in “Proceedings of 16th ICALP”], Lect. Notes in Comput. Sci., 372, pp. 637–651, Springer, 1989Google Scholar
  19. [19]
    REUTENAUER C., Free Lie algebras, To appearGoogle Scholar
  20. [20]
    VIENNOT G., Algèbres de Lie libres et monoïdes libres, Lecture Notes in Maths., 691, Springer, 1978Google Scholar
  21. [21]
    VIENNOT X.G., Heaps of pieces, I: Basic definitions and combinatorial lemmas, [in “Combinatoire Enumérative”, G. Labelle, P. Leroux, eds.], Lect. Notes in Maths., 1234, pp. 321–350, Springer, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • D. Krob
    • 1
  • P. Lalonde
    • 2
  1. 1.LACIM and CNRS(LITP; Institut Blaise Pascal)Germany
  2. 2.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations