Crocos: An integrated environment for interactive verification of SDL specifications

  • Dominique Méry
  • Abdelillah Mokkedem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 663)


We are interested by proofs of concurrent programs properties, such as invariance and eventuality. They are connected with execution of a program, and, in order to discuss them, we introduce an operational model of the language and show that the deductive system is consistent with respect to it. The studied language is a selected subset of the SDL language. A system for computer-aided reasoning on programs is derived as follows: we implement the deductive system in Isabelle [24] and then integrate it into a programming environment developed under Concerto namely Crocos [19]. The prover proceeds in an interactive way in which the user's intervention may be required at several stages of the proof derivation.


  1. 1.
    G. V. Bochmann and C. A. Sunshine. Formal methods in communication protocol design. In IEEE Transactions on Communications, pages 362–372. IEEE, April 1980. COM-28.Google Scholar
  2. 2.
    CCITT. Recommendation z. 100 Specification and Description Language SDL. Note, 1988.Google Scholar
  3. 3.
    K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley Publishing Company, 1988. ISBN 0-201-05866-9.Google Scholar
  4. 4.
    E.M. Clarke, E.A Emerson, and A.P Sistla. Automatic verification of finitestate concurrent systems using temporal logic specifications: A practical approach. Tenth ACM Symposium on Principles of Programming Languages, pages 117–126, 1983.Google Scholar
  5. 5.
    M. Diaz, J.P. Ansard, J.P Courtiat, P. Azema, and V. Chari, editors. The formal description technique ESTELLE. North-Holland, 1989.Google Scholar
  6. 6.
    E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.Google Scholar
  7. 7.
    R. W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Proc. Symp. Appl. Math. 19, Mathematical Aspects of Computer Science, pages 19–32. American Mathematical Society, 1967.Google Scholar
  8. 8.
    J. C. Godskesen. An operational Semantic Model for Basic SDL-Extended abstract. In O. Faergemand and R. Reed, editors, Fifth SDL Forum Evolving methods. North-Holland, 1991.Google Scholar
  9. 9.
    E.P. Gribomont. Stepwise refinement and concurrency: The finite-state case. In Jan L.A van de Snepscheut, editor, Science of Computer Programming, Mathematics of Program Construction, volume 14, pages 185–228. North-Holland, October 1990.Google Scholar
  10. 10.
    C. A. R. Hoare, S. D. Brookes, and A. W. Roscoe. A theory of communicating sequential processes. Technical Report PRG-16, Oxford University Programming Research Group, 1981. Technical Monograph.Google Scholar
  11. 11.
    G.P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1:27–57, 1975.Google Scholar
  12. 12.
    ISO. Information processing systems, open systems interconnection, est elle (formal description techniques based on an extended state transition model). Technical Report ISO/IS 9074, ISO, 1988.Google Scholar
  13. 13.
    ISO. Information processing systems — Open Systems Interconnection — LOTOS — A formal description technique based on the temporal ordering of observ ational behaviour, 1989-02-15 edition, 1989. ISO 8807:1989 (E).Google Scholar
  14. 14.
    L. Lamport. The ‘Hoare Logic’ of concurrent programs. Acta Informatica, 14:21–37, 1980.Google Scholar
  15. 15.
    L. Lamport. What good is temporal logic? pages 657–677. IFIP, 1983.Google Scholar
  16. 16.
    Z. Manna and A. Pnueli. Verification of concurrent programs: temporal proof principles. In Proceedings of the Workshop on Logics of programs, pages 200–252, New York, 1981. Spinger Verlag. LNCS 131.Google Scholar
  17. 17.
    Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness properties of concurrent programms. Science of Computer Programming, 4:257–290, december 1984.Google Scholar
  18. 18.
    D. Méry. Méthode axiomatique pour les propriétés de fatalité des programmes parallèles. RAIRO Informatique Théorique et Application, 21(3):287–322, 1987.Google Scholar
  19. 19.
    D. Méry and A. Mokkedem. A proof environment for a subset of SDL. In O. Faergemand and R. Reed, editors, Fifth SDL Forum Evolving methods. North-Holland, 1991.Google Scholar
  20. 20.
    D. Méry and A. Mokkedem. CROCOS: An Integrated Environment for Interactive Verification of SDL Specifications. In Participant's Proceedings of the Fourth Workshop on Computer-Aided Verification (CAV '92). Montreal, 1992.Google Scholar
  21. 21.
    D. Méry, A. Mokkedem, and D. Roegel. Crocos: Un environnement de preuve interactive de specifications SDL. Technical Report 92-r-001, Université de Nancy I, CRIN, 1991.Google Scholar
  22. 22.
    S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Informatica, 6:319–340, 1976.Google Scholar
  23. 23.
    L. Paulson. Natural deduction as higher-order resolution. The Journal of Logic Programming, 3:237–258, 1986.Google Scholar
  24. 24.
    L. Paulson and T. Nipkow. Isabelle tutorial and users's manual. Technical report, University of Cambridge, Computer Laboratory, 1990.Google Scholar
  25. 25.
    G.D. Plotkin. A structural approach to operational semantics. Technical report, Aarhus University, Denmark, DAIMI, 1981. FN-19.Google Scholar
  26. 26.
    A. Pnueli. The temporal logics of programs. In Proceedings of 18th Symposium on Foundations of Computer Science, pages 46–57. IEEE, 1977.Google Scholar
  27. 27.
    J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Xesar A Tool for Protocol Validation. CAP Sogeti Innovation and LGI-IMAG, 1987. Version 1.2.Google Scholar
  28. 28.
    R. Saracco, J. R. W. Smith, and R. Reed. Telecommunications Systems Engineering using SDL. North Holland.Google Scholar
  29. 29.
    SEMA Group. CONCERTO Manuel de Référence, July 1990.Google Scholar
  30. 30.
    C. A. Sunshine. Formal methods for protocol specification and verification. Computer, 12:20–27, Sept. 1979.Google Scholar
  31. 31.
    P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–2):72–99, 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Dominique Méry
    • 1
  • Abdelillah Mokkedem
    • 2
  1. 1.CRIN-CNRS & INRIA LorraineVandœuvre-lès-Nancy CedexFrance
  2. 2.CRIN-INPL & INRIA LorraineVandœuvre-lès-Nancy CedexFrance

Personalised recommendations