Advertisement

On assembly of four-connected graphs

Extended abstract
  • Jianer Chen
  • Arkady Kanevsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 657)

Abstract

A set of operations on 4-connected graphs is introduced in which only line addition and vertex splitting are involved. It is shown that every 4-connected graph can be assembled from either the complete graph K5 or the double-axle wheel W 4 2 on four vertices using only these operations, with 4-connectivity preserved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, J., Gross, J. L.: Linearly synthesizing 2-connected simplicial graphs. Submitted for publication (1991)Google Scholar
  2. 2.
    Chen, J., Kanevsky, A.: On assembly of four-connected graphs (I): Minimal fourconnected graphs. Submitted for publication (1992)Google Scholar
  3. 3.
    Chen, J., Kanevsky, A.: On assembly of four-connected graphs (II): General theorems. Preprint (1992)Google Scholar
  4. 4.
    Chen, J., Kanevsky, A.: On assembly of four-connected graphs (III): Algorithms and applications. In preparation (1992)Google Scholar
  5. 5.
    Chen, J., Kanevsky, A., Tamassia, R.: Algorithm for triconnected ear decomposition of a graph. The 22nd Southeastern Intl. Conf. on Combinatorics, Graph Theory, and Computing Baton Rouge, Feb. 11–15, (1991)Google Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-line graph algorithms with spqr-trees. Lecture Notes in Computer Science 442 (1990) 598–611Google Scholar
  7. 7.
    Dirac, G. A.: 4-chrome graphen und vollständige 4-graphen. Math. Nachr. 22 (1960) 51–60Google Scholar
  8. 8.
    Galil, Z., Italiano, G. F.: Maintaining biconnected components of dynamic planar graphs. Proc. 18th ICALP (1991)Google Scholar
  9. 9.
    Galil, Z., Italiano, G. F.: Fully dynamic algorithms for edge-connectivity problem. Proc. 23rd STOC, ACM (1991) 317–327Google Scholar
  10. 10.
    Kanevsky, A., Tamassia, R., Di Battista, G., Chen, J.: On-line maintenance of the four-connected components of a graph. Proc. 32nd FOCS, IEEE (1991) 793–801Google Scholar
  11. 11.
    Lovasz, L.: Computing ears and branchings in parallel. Proc. 26th FOCS, IEEE (1985) 464–467Google Scholar
  12. 12.
    Miller, G. L., Ramachandran, V.: A new graph triconnectivity algorithm and its application. Proc. 19th STOC, ACM (1987) 254–263Google Scholar
  13. 13.
    Robertson, N., Seymour, P. D.: Graph minors XVI. Wagner's conjecture. J. Combinatorial Theory B To appearGoogle Scholar
  14. 14.
    Slater, P. J.: A classification of 4-connected graphs. J. Combinatorial Theory B 17 (1974) 281–298Google Scholar
  15. 15.
    Tutte, W. T.: A theory of 3-connected graphs. Nederl. Akad. Wetersch. Proc. 64 (1961) 441–445Google Scholar
  16. 16.
    Tutte, W. T.: Connectivity in Graphs. University of Toronto Press (1966)Google Scholar
  17. 17.
    Westbrook, J., Tarjan, R. E.: Maintaining bridge-connected and biconnected components on-line. Algorithmica 7 (1992) 433–464Google Scholar
  18. 18.
    Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 (1932) 339–362Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Jianer Chen
    • 1
  • Arkady Kanevsky
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations