Scheduling with incompatible jobs

  • Hans L. Bodlaender
  • Klaus Jansen
  • Gerhard J. Woeginger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 657)


We consider scheduling problems in a multiprocessor system with incompatible jobs (two incompatible jobs cannot be processed by the same machine). We consider the problem to minimize the maximum job completion time, the makespan. This problem is NP-complete.

We present a number of polynomial time approximation algorithms for this problem where the job incompatibilities possess a special structure. As the incompatibilities form a graph on the set of jobs, our algorithms strongly rely on graph theoretic methods. We also solve an open problem by Biró, Hujter and Tuza on coloring precolored bipartite graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biró, B., Hujter, M., and Tuza, Z.: Precoloring extension. I. Interval graphs. Disc. Math. (to appear)Google Scholar
  2. 2.
    Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I. Technical Report RUU-CS-91-44, Department of Computer Science, Utrecht University, Utrecht, the Netherlands (1991)Google Scholar
  3. 3.
    Bodlaender, H.L., Kloks, T.: Better algorithms for the pathwidth and treewidth of graphs. Proc. 18th ICALP, LNCS 510 (Springer, Berlin, 1991) 544–555Google Scholar
  4. 4.
    Fisher, M.L.: Worst-case analysis of heuristic algorithms. Management Sci 26 (1980) 1–17Google Scholar
  5. 5.
    Garey, M.R., Graham, R.L., Johnson, D.S.: Performance guarantees for scheduling algorithms. Operations Research 26 (1978) 3–21Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)Google Scholar
  7. 7.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45 (1966) 1563–1581Google Scholar
  8. 8.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17 (1969) 263–269Google Scholar
  9. 9.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. J. ACM 34 (1987) 144–162Google Scholar
  10. 10.
    Hujter, M., Tuza, Z.: Precoloring extension. II. Graph classes related to bipartite graphs. J. Graph Theory (to appear)Google Scholar
  11. 11.
    Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Technical Report 319 Fachbereich Mathematik, TU Berlin, Berlin, Germany (1992)Google Scholar
  12. 12.
    Lee, C.Y.: Parallel machines scheduling with nonsimultaneous machine available time. Disc. Appl. Math. 30 (1991) 53–61Google Scholar
  13. 13.
    Linial, N., Vazirani, U.: Graph products and chromatic numbers. FOCS (1989) 124–128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  • Klaus Jansen
    • 2
  • Gerhard J. Woeginger
    • 3
  1. 1.Department of Computer ScienceUtrecht UniversityTB UtrechtThe Netherlands
  2. 2.Fachbereich IV, Mathematik und InformatikUniversität TrierTrierGermany
  3. 3.Institut für InformationsverarbeitungTU GrazGrazAustria

Personalised recommendations