Termination proofs of well-moded logic programs via conditional rewrite systems

  • Harald Ganzinger
  • Uwe Waldmann
Applications to Logic Programming, Normalization Strategies and Unification
Part of the Lecture Notes in Computer Science book series (LNCS, volume 656)


In this paper, it is shown that a translation from logic programs to conditional rewrite rules can be used in a straightforward way to check (semi-automatically) whether a program is terminating under the prolog selection rule.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krzysztof R. Apt and Dino Pedreschi. Studies in pure Prolog: Termination. Technical Report CS-R9048, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands, September 1990.Google Scholar
  2. 2.
    George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In H. Brakhage, editor, Automata Theory and Formal Languages, 2nd GI Conference, LNCS 33, pages 134–183, Kaiserslautern, West Germany, May 20–23, 1975. Springer-Verlag.Google Scholar
  3. 3.
    Hubert Comon. Solving inequations in term algebras (extended abstract). In Fifth Annual IEEE Symposium on Logic in Computer Science, pages 62–69, Philadelphia, PA, USA, June 4–7, 1990. IEEE Computer Society Press, Los Alamitos, CA, USA.Google Scholar
  4. 4.
    Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 6, pages 244–320. Elsevier Science Publishers B.V., Amsterdam, New York, Oxford, Tokyo, 1990.Google Scholar
  5. 5.
    Harald Ganzinger. Order-sorted completion: the many-sorted way. Theoretical Computer Science, 89:3–32, 1991.CrossRefGoogle Scholar
  6. 6.
    Feliks Kluźniak. Type synthesis for Ground Prolog. In Jean-Louis Lassez, editor, Logic Programming, Proceedings of the Fourth International Conference, volume 2, pages 788–816, Melbourne, Australia, May 25–29, 1987. The MIT Press.Google Scholar
  7. 7.
    M. R. K. Krishna Rao, Deepak Kapur, and R. K. Shyamasundar. A transformational methodology for proving termination of logic programs. Draft, Computer Science Group, Tata Institute of Fundamental Research, Bombay, India, February 28, 1992. To appear in: Proceedings of the 5th Conference on Computer Science Logic 1991, LNCS, Springer-Verlag.Google Scholar
  8. 8.
    John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, second, extended edition, 1987.Google Scholar
  9. 9.
    Lutz Plümer. Termination Proofs for Logic Programs. Dissertation, Universität Dortmund, Abteilung Informatik, Dortmund, Germany, 1989. Short version: Termination Proofs for Logic Programs based on Predicate Inequalities, in David H. D. Warren and Peter Szeredi, eds., Logic Programming, Proceedings of the Seventh International Conference, Jerusalem, Israel, June 18–20, 1990, pages 634–648, The MIT Press.Google Scholar
  10. 10.
    Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley, second, revised edition, 1951.Google Scholar
  11. 11.
    Jeffrey D. Ullman and Allen Van Gelder. Efficient tests for top-down termination of logical rules. Journal of the ACM, 35(2):345–373, April 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Harald Ganzinger
    • 1
  • Uwe Waldmann
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations