Recent developments in algorithms for the maximum-flow problem

  • Kurt Mehlhorn
Invited Talk III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 652)


  1. [Alo90]
    N. Alon. Generating pseudo-random permutations and maximum flow algorithms. IPL, 35:201–204, 1990.Google Scholar
  2. [AO89]
    R. K. Ahuja and J.B. Orlin. A fast and simple algorithm for the maximum flow problem. Oper. Res., 37:748–759, 1989.Google Scholar
  3. [CH89]
    J. Cheriyan and T. Hagerup. A randomized maximum flow algorithm. IEEE Symposium on Foundations of Computer Sience, 30:118–123, 1989. full version available as Tech. Rep. no 988, School of Operations Research and Industrial Engineering, Cornell University, October 1991.CrossRefGoogle Scholar
  4. [CHM90]
    J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a maximum flow be computed in o(nm) time. In Lecture Notes in Computer Science, volume 443, pages 235–248. Proc. of the ICALP Conference, Springer Heidelberg, 1990. full version available as tech report MPI-I-91-120, Max-Planck-Institut für Informatik, Saarbrücken.Google Scholar
  5. [CM91]
    Joseph Cheriyan and Kurt Mehlhorn. Algorithms on dense graphs. Technical Report MPI-I-91-114, Max-Planck-Institut für Informatik, 1991.Google Scholar
  6. [GT88]
    A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow problem. Journal of the ACM, 35:921–940, 1988.CrossRefGoogle Scholar
  7. [KRT92]
    V. King, S. Rao, and R.E. Tarjan. A faster deterministic max-flow algorithm. ACM-SIAM Symposium on Discrete Algorithms, 3:157–164, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Kurt Mehlhorn
    • 1
  1. 1.Max-Planck-Institut für Informatik and Fachbereich InformatikUniversität des Saarlandes66 SaarbrückenGermany

Personalised recommendations