CLP({ie308-01}) for proving interargument relations

  • Frédéric Mesnard
  • Jean -Gabriel Ganascia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 649)


In the logic programming community, the concept of interargument relation, that is, the relation that holds between the size of the arguments of a procedure, appears in numerous works on termination proofs for logic programs. In this paper, we present a method for proving linear interargument inequalities. Our technique relies on the notion of abstract procedures and on CLP({ie308-02}). We prove its correctness and fully describe its implementation in Prolog III. The applications we present go beyond termination proofs and demonstrate its usefulness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bol, 90]
    R.N. Bol: Toward More Efficient Loop Checks. In Proc. of NACLP'90, pp. 465–479, 1990.Google Scholar
  2. [Brough & Walker, 84]
    D.R. Brough, A. Walker: Some practical properties of logic programming interpreters. In Proc. of FGCS'84, pp. 149–156, 1984.Google Scholar
  3. [Cohen, 90]
    J. Cohen: Constraint Logic Programming Language. In CACM, vol. 33, n∘7, pp. 54–68, July 1990.Google Scholar
  4. [Colmerauer, 90]
    A. Colmerauer: An introduction to Prolog III. In CACM, vol. 33, n∘7, pp. 70–90, July 1990.Google Scholar
  5. [Cooper, 72]
    D.C. Cooper: Theorem Proving in arithmetic without multiplication. In Machine Intelligence 7, pp. 91–99, 1972.Google Scholar
  6. [De Schreye et al., 89]
    P. Cousot, N. Halbwachs: Automatic discovery of linear restraints among variables of a program. In Proc. of the 5th ACM Symposium of the POPL, pp. 84–97, 1987.Google Scholar
  7. [Dincbas et al., 88]
    [De Schreye et al., 89] D. De Schreye, M. Bruynooghe, K. Versaechtse: On the Existence of Nonterminating Queries for a Restricted Class of PROLOG-Clauses. In Artificial Intelligence 41, pp. 237–248, 1989.Google Scholar
  8. [Dincbas et al., 88]
    M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier: The Constraint Logic Programming Language CHIP. In Proc. of FGCS'88, 1988.Google Scholar
  9. [Jaffar & Lassez, 87]
    J. Jaffar, J-L. Lassez: Constraint logic programming. In Proc. of the 14th ACM Symposium of the POPL, pp. 111–119, 1987.Google Scholar
  10. [Janssens & Bruynooghe, 90]
    G. Janssens, M. Bruynooghe: Deriving descriptions of possible values of program variables by means of abstract interpretation. Report CW 107, Dpt of Computer Science, K.U. Leuven, March 1990.Google Scholar
  11. [Karr, 76]
    M. Karr: Affine Relationships Among Variables of a Program. In Acta Informatica 6, pp.133–151, 1976.Google Scholar
  12. [Kowalski, 74]
    R.A. Kowalski: Predicate Logic as a Programming Language. In IFIP, pp. 569–574, 1974.Google Scholar
  13. [Lane, 88]
    A. Lane: Trilogy: a New Approach to Logic Programming. In Byte, March 1988.Google Scholar
  14. [Lloyd, 87]
    J.W. Lloyd: Foundations of Logic Programming; Springer-Verlag, 1987.Google Scholar
  15. [Presburger, 30]
    M. Presburger: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen in welchem die Addition als einzige Operation hervortritt. In Comptes-rendus du Ier Congrès des Mathématiciens des Pays Slaves, Warsaw, pp. 92–101,1930.Google Scholar
  16. [Plümer, 90]
    L. Plümer: Termination Proofs for Logic Programs, LNAI 446, Springer-Verlag, 1990.Google Scholar
  17. [Ullman & Van Gelder, 88]
    J.D. Ullman & A. Van Gelder: Efficient tests for top-down termination of logical rules. In JACM, vol. 35, n∘ 2, pp. 345–373, April 1988.Google Scholar
  18. [Van Gelder, 90]
    A. Van Gelder: Deriving Constraints Among Arguments Sizes on Logic Programs. In Proc. of the 9th Symp. of the PODS, pp. 47–60, 1990.Google Scholar
  19. [Vasak & Potter, 86]
    T. Vasak & J. Potter: Characterisation of terminating logic programs. In Proc. of SLP'86, pp. 140–147, 1986Google Scholar
  20. [Verschaetse & De Schreye, 91]
    K. Verschaetse & D. De Schreye: Deriving Termination Proofs for Logic Programs, using Abstract Procedures. In Proc. of the 8th ICLP, pp. 301–315, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Frédéric Mesnard
    • 1
    • 2
  • Jean -Gabriel Ganascia
    • 2
  1. 1.Iremia Université de la RéunionSt Denis CedexFrance
  2. 2.Laforia Université Paris VIParis Cedex 05France

Personalised recommendations