Data parallel evaluation-interpolation algorithm for solving functional matrix equations

  • Chen Pin
  • E. V. Krishnamurthy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 634)


A data parallel algorithm is described for solving functional matrix equations, using evaluation and rational interpolation based on Thiele's reciprocal differences.


  1. [1]
    E. V. Krishnamurthy, ‘Error-Free Polynomial Matrix Computations’ (Springer-Verlag, New York 1985).Google Scholar
  2. [2]
    V. K. Murthy, E. V. Krishnamurthy and Pin Chen, ‘Systolic Algorithm For Rational Interpolation and Padé Approximation', Parallel Computing, Vol. 18, pp.75–83, January 1992.MathSciNetGoogle Scholar
  3. [3]
    E. V. Krishnamurthy and S. K. Sen, ‘Numerical Algorithms'(Affiliated, East-West Press, New Delhi 1986).Google Scholar
  4. [4]
    A. Ben-Israel and T. N. E Greville. ‘Generalized Inverses: Theory and Applications',Wiley, New York, 1974).Google Scholar
  5. [5]
    E. W. Cheney, ‘Introduction to Approximation theory', (McGraw Hill, New York, 1966).Google Scholar
  6. [6]
    E. V. Krishnamurthy and Pin Chen, ‘Polynomial Matrix Computation Using Data Parallel Evaluation-Interpolation’ to appear in the Sixteenth Australian Computer Science Conference 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Chen Pin
    • 1
  • E. V. Krishnamurthy
    • 1
  1. 1.Computer Science LaboratoryThe Australian National UniversityCanberraAustralia

Personalised recommendations