Parallel searching for 3D-objects

  • Frank Klingspor
  • Dietmar Luhofer
  • Thomas Rottke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 634)


The major problem in three-dimensional geometric applications such as the computation of arbitrary polyhedra intersections is the great diversity of possible configurations of geometric objects. Thus, even seemingly straightforward operations often require an enormous number of floating-point computations. This problem can be alleviated by an appropriate preprocessing of the objects involved. For this purpose, we suggest tetrahedronizing geometric objects and organizing the tetrahedra in a topological B*- Tree. The topological B*-Tree can function both as an index and as an object data structure and is thus ideally suited for a wide spectrum of geometric applications. Furthermore, it can easily be used to support parallel algorithms. Parallel search algorithms can only be efficient if the data is very evenly distributed among the available parallel resources. For this purpose, we have developed a geometric hashing method extended by a special control mechanism. Using the topological B*-Tree to support preprocessing of geometric objects leads to a significant reduction in the number of required floating-point operations and therefore in execution lime.


geometric searching parallel topological B*-Trees data distribution polyhedra intersections minimal distance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bayer, R. and McCreight, E., Organization and maintenance of large ordered indexes, Acta Informatica, 1 (1972), pp. 173–189.CrossRefGoogle Scholar
  2. [2]
    Fuchs, T., On visible surface generation by a priori tree structures. Computer Graphics, 14, pp. 124–133.Google Scholar
  3. [3]
    Guttman, A., R-trees: A dynamic data structure for spatial searching, ACM SIGMOD, 1984, pp. 47–57.Google Scholar
  4. [4]
    Klingspor, F. and Rottke, T., Realzeitzugriff auf ausgedehnte geometrische Objekte in einem Transputernetz, Proc. of the TAT '91, Informatik-Fachberichte, Springer, (1991).Google Scholar
  5. [5]
    Klingspor, F.and Rottke, T., Realzeilzugriff auf ausgedehnte geometrische Objekte mit parallelen topologischen B*-Bäumen, Proc. of the PEARL 91, Informalik-Fachberichte, Springer, (1991).Google Scholar
  6. [6]
    Klingspor, F., Luhofer, D., Rottke, T., Intersection and Minimal Distance of 3d-Objects, Computer Animation, 1992, to appear.Google Scholar
  7. [7]
    Kriegel, H.P., Seeger, B., PLOP-Hashing: A Grid File without Directory, Proc. 4th Int. Conf. on Data Engineering, 1988, pp. 369–376.Google Scholar
  8. [8]
    Nicvergelt, J.H. et al., The grid file: An adaptable, symmetric multikeyfile structure, ACM TODS 9, 1984, pp. 38–71.CrossRefGoogle Scholar
  9. [9]
    Rottke, T., Parallele Suchprozesse in der geometrischen Datenverarbeitung, Technischer Bericht, Fachbereich Informatik, FernUniversität Hagen, to appear.Google Scholar
  10. [10]
    Rottke, T. et al., On the Analysis of Grid Structures for Spatial Objects of Non-Zero Size, Graph-Theorei Concepts in Computer Science, 1987.Google Scholar
  11. [11]
    Samet, H., The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys, 1984, pp. 187–260.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Frank Klingspor
    • 1
  • Dietmar Luhofer
    • 1
  • Thomas Rottke
    • 1
  1. 1.FernUniversitätHagen 1

Personalised recommendations