Dynamo — A portable tool for dynamic load balancing on distributed memory multicomputers

  • Erik Tärnvik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 634)


Dynamic load balancing is an important technique when developing applications with unpredictable load distribution on distributed memory multicomputers. A tool, Dynamo, that can be used to utilize dynamic load balancing is presented. This tool separates the application from the load balancer and thus makes it possible to easily exchange the load balancer of a given application and experiment with different load balancing strategies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Eriksson. Parallel global optimization using interval analysis. Technical Report UMINF-91.17, Inst. of Information Proc, University of Umeå, S-901 87 UMEÅ, 1991.Google Scholar
  2. 2.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory of NP-Completeness. Freeman New York, 1979.Google Scholar
  3. 3.
    G. A. Geist, M. T. Heath, B. E. Peyton, and P. H. Worley. PICL — A Portable Instrumented Communication Library. Oak Ridge Nat. Lab., Oak Ridge, TN 37831, 1990.Google Scholar
  4. 4.
    R. V. Hanxleden and L. R. Scott. Load balancing on message passing architectures. Journal of Parallel and Distributed Computing, 13:312–324, 1991.Google Scholar
  5. 5.
    M. T. Heath and J. A. Etheridge. Visualizing performance of parallel programs. Technical Report ORNL/TM-11813, Oak Ridge Nat. Lab., Oak Ridge, TN, May 1991.Google Scholar
  6. 6.
    J. M. Jansen and F. W. Sijstermans. Parallel branch-and-bound. Future Generation Computer Systems, 4:271–279, 1989.Google Scholar
  7. 7.
    T-H. Lai and S. Sahni. Anomalies in parallel branch-and-bound algortithms. Comm. ACM, 27:594–602.Google Scholar
  8. 8.
    J. Lin and J. A. Storer. Processor-efficient hypercube algorithms for the knapsack problem. Journal of Parallel and Distributed Computing, 11:332–337, 1991.Google Scholar
  9. 9.
    S. Martello and P. Toth. Knapsack Problems: Algorithms and computer implementations. John Wiley & Sons, 1990.Google Scholar
  10. 10.
    E. Tärnvik. A parallel branch-and-bound algorithm for the 0–1 knapsack problem, (in preparation), University of Umeå, 1992.Google Scholar
  11. 11.
    Erik Tärnvik. Dynamo — a portable dynamic load balancing tool. Technical report, University of Umeå, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Erik Tärnvik
    • 1
  1. 1.Institute of Information Processing, Department of Computing ScienceUniversity of UmeåUmeåSweden

Personalised recommendations