Computation of the eigenvalues of real symmetric matrices using a processor farm

  • L. C. Waring
  • M. Clint
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 634)


A parallel implementation of an algorithm to compute the eigenvalues of a real symmetric matrix using a MIMD machine is described. An array of Transputers configured in a ring topology is used as a processor farm for the computation. The speedup obtained by using P processors asymptotically approaches P when the size of (he problem becomes large.


Linear algebra matrix multiplication orthogonalisation Transputers ring topology processor farm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Clint, M., Holt, R., Perrott, R. and Stewart, A. A comparison of two parallel algorithms for the symmetric eigenproblem, Int. Jnl. Comp. Math. 15 (1984) 291–302.Google Scholar
  2. [2]
    Clint, M., Holt, R., Perrott, R. and Stewart, A. DAP Fortran subroutine for the eigensolution of real symmetric matrices, Comput. J. 28 (1985) 340–342.Google Scholar
  3. [3]
    Golub, G. and van Loan, C. Matrix Computations, North Oxford Academic (1983).Google Scholar
  4. [4]
    Modi, J. J. and Pryce, J. D. Efficient implementation of Jacobi's diagonalisation method on the DAP, Num. Math. 46 (1985) 443–454.Google Scholar
  5. [5]
    Weston, J. S. and Clint, M. Two algorithms for the parallel computation of eigenvalues and eigenvectors of large symmetric matrices using the ICL DAP, Parallel Computing 13 (1990) 281–288Google Scholar
  6. [6]
    Waring, L. C. and Clint, M. Improved parallel Gram-Schmidt orthogonalisation on a network of transputers. Applications of Transputers 3, Durrani, T. S., Sandham, W. A., Soraghan, J. J. and Forbes, S. M. (Editors), (1991) vol 1, 117–122.Google Scholar
  7. [7]
    Waring, L. C. A general purpose communication shell for a network of Transputers, Microprocessing and Microprogramming 29, vol 2 (1989/90) 107–119.Google Scholar
  8. [8]
    The Occam 2 Reference Manual, INMOS Ltd.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • L. C. Waring
    • 1
  • M. Clint
    • 1
  1. 1.Department of Computer ScienceThe Queen's University of BelfastBelfastNorthern Ireland

Personalised recommendations