The time-parallel solution of parabolic partial differential equations using the frequency-filtering method

  • Graham Horton
  • Ralf Knirsch
  • Hermann Vollath
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 634)


We consider the parallel solution of time-dependent partial differential equations. Due to the fact that time is a one-way dimension, traditional methods attack this type of equation by solving the resulting sequence of problems in a sequential manner. Parallel solution methods retain this sequential process, obtaining their parallelism by distributing the problem at each discrete time-step. It has been recently shown that a new approach called time-parallelism, which assigns successive time-steps to different processors can also lead to high efficiencies. In this paper we describe such a time-parallel algorithm based on the frequency-filtering scheme of Wittum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bastian, J. Burmeister, and G. Horton. Implementation of a parallel multigrid method for parabolic partial differential equations. In W.Hackbusch, editor, Proceedings of the 6th GAMM Seminar, pages 18–27, Braunschweig, 1990. Vieweg.Google Scholar
  2. 2.
    J. Burmeister. Paralleles Lösen diskreter parabolischer Probleme mit Mehrgittertechniken. Master's thesis, Universität Kiel, 1985.Google Scholar
  3. 3.
    W. Hackbusch. Parabolic multi-grid methods. In R. Glowinski and J.-R. Lions, editors, Computing Methods in Applied Sciences and Engineering, VI, Amsterdam, 1984. North Holland.Google Scholar
  4. 4.
    G. Horton. Ein zeitparalleles Lösungsverfahren für die Navier-Stokes Gleichungen. PhD thesis, Universität Erlangen-Nürnberg, 1991.Google Scholar
  5. 5.
    G. Horton and R. Knirsch. A space-and time-parallel multigrid method for time-dependent partial differential equations. In W. Joosen and E. Milgrom, editors, Parallel Computing: From Theory to Sound Practice, Amsterdam, 1992. IOS Press.Google Scholar
  6. 6.
    R. Knirsch. Implementierung eines parallelen Mehrgitterverfahrens zur Lösung instationärer partieller Differentialgleichungen. Master's thesis, Universität Erlangen-Nürnberg, 1990.Google Scholar
  7. 7.
    H. Vollath. Die zeitparallele Lösung von instationären partiellen Differential-gleichungen mit dem Glätter-Korrektor-Verfahren. Technical report, Universität Erlangen-Nürnberg, 1992.Google Scholar
  8. 8.
    W. Weiler. Parallelization of a frequency filtering method by domain decomposition. In W.Hackbusch and G. Wittum, editors, Proceedings of the 8th GAMM Seminar, in preparation, Braunschweig, 1992. Vieweg.Google Scholar
  9. 9.
    G. Wittum. Filternde Zerlegungen: Ein Beitrag zur schnellen Lösung großer Gleichungssysteme. Report 90-19, Universität Heidelberg, 1990.Google Scholar
  10. 10.
    D. E. Womble. A time-stepping algorithm for parallel computers. SIAM Journal on Scientific and Statistical Computing, 11, No. 5:824–837, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Graham Horton
    • 1
  • Ralf Knirsch
    • 1
  • Hermann Vollath
    • 1
  1. 1.Lehrstuhl für Rechnerstrukturen (IMMD 3)Universität Erlangen-NürnbergErlangen

Personalised recommendations