Advertisement

Maintenance of triconnected components of graphs

Extended abstract
  • J. A. La Poutré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 623)

Abstract

In this paper, optimal algorithms and data structures are presented to maintain the triconnected components of a general graph, under insertions of edges in the graph. At any moment, the data structure can answer the following type of query: given two nodes in the graph, are these nodes triconnected. Starting from an “empty” graph of n nodes (i.e., a graph with no edges) the solution runs in O(n + m.α(m, n)) total time, where m is the total number of queries and edge insertions. The solution allows for insertions of nodes also.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Ausiello, G.F. Italiano, A. Marchetti Spaccamela, and U. Nanni, Incremental Algorithms for Minimal Length Paths, Proc. 1st Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA) 1990, 12–21.Google Scholar
  2. [2]
    G. Di Battista and R. Tamassia, Incremental Planarity Testing, Proc. 30th Ann. Symp. on Found. of Comp. Sci. (FOCS) 1989, 436–441.Google Scholar
  3. [3]
    G. Di Battista and R. Tamassia, On-Line Graph Algorithms with SPQR-Trees, Proc. 17th Int. Colloquium on Automata, Languages and Programming (ICALP) 1990, 598–611.Google Scholar
  4. [4]
    D. Eppstein, G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook and M. Yung, Maintenance of a Minimum Spanning Forest in a Dynamic Planar Graph, Proc. 1st Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA) 1990, 1–11.Google Scholar
  5. [5]
    G.N. Frederickson, Data structures for on-line updating of minimum spanning trees, with applications, SIAM J. Computing 14 (1985), pp. 781–798.Google Scholar
  6. [6]
    M.L. Fredman and M.E. Saks, The Cell-Probe Complexity of Dynamic Data Structures, Proc. 21th Ann. ACM Symp. on Theory of Comput. (STOC) 1989, 345–354Google Scholar
  7. [7]
    H.N. Gabow, A Scaling Algorithm for Weighted Matching on General Graphs, Proc. 26th Ann. Symp. on Found. of Comp. Sci. (FOCS) 1985, 90–100.Google Scholar
  8. [8]
    H.N. Gabow, Data Structures for Weighted Matching and Nearest Common Ancestors with Linking, Proc. 1st Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA) 1990, 434–443.Google Scholar
  9. [9]
    H.N. Gabow and R.E. Tarjan, A Linear Time Algorithm for a Special Case of Disjoint Set Union, J. Comput. Syst. Sci. 30 (1985), 209–221.CrossRefGoogle Scholar
  10. [10]
    Z. Galil and G.F.Italiano, Fully Dynamic Algorithms for Edge Connectivity Problems, Proc. 23th Ann. ACM Symp. on the Theory of Computing (STOC) 1991.Google Scholar
  11. [11]
    F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass., 1969.Google Scholar
  12. [12]
    J. Hopcroft and R.E. Tarjan, Dividing a graph into Triconnected Components, SIAM J. Comput. 2 (1973).Google Scholar
  13. [13]
    G.F. Italiano, Amortized efficiency of a path retrieval data structure, Theoretical Computer Science, 48, (1986), pp. 273–281.CrossRefGoogle Scholar
  14. [14]
    G.F. Italiano, Finding paths and deleting edges in directed acyclic graphs, Information Processing Letters, 28, (1988), pp. 5–11.Google Scholar
  15. [15]
    J.A. La Poutré and J. van Leeuwen, Maintenance of Transitive Closures and Transitive Reductions of Graphs, In: H. Göttler, H.J. Schneider (Eds.), Graph-Theoretic Concepts in Computer Science 1987, Lecture Notes in Computer Science Vol. 314, Springer-Verlag, Berlin, pp. 106–120.Google Scholar
  16. [16]
    J.A. La Poutré, New Techniques for the Union-Find Problem, Proc. 1st Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA) 1990, 54–63.Google Scholar
  17. [17]
    J.A. La Poutré, Lower Bounds for the Union-Find and the Split-Find Problem on Pointer Machines, Proc. 22th Ann. ACM Symp. on Theory of Comput. (STOC) 1990, 34–44.Google Scholar
  18. [18]
    J.A. La Poutré, J. van Leeuwen and M.H. Overmars, Maintenance of 2-and 3-connected components of graphs, Part I: 2-and 3-edge-connected components, Tech. Rep. RUU-CS-90-26, Utrecht University, 1990.Google Scholar
  19. [19]
    J.A. La Poutré, Maintenance of 2-and 3-connected components of graphs, Part II: 2-and 3-edge-connected components and 2-vertex-connected components, Tech. Rep. RUU-CS-90-27, Utrecht University, 1990.Google Scholar
  20. [20]
    J.A. La Poutré, Dynamic Graph Algorithms and Data Structures, Ph.D. Thesis, Utrecht University, 1991.Google Scholar
  21. [21]
    J.A. La Poutré, Fast Deterministic Algorithms for Incremental Planarity Testing, Princeton University, in preparation.Google Scholar
  22. [22]
    F.P. Preparata and R. Tamassia, Fully Dynamic Techniques for Point Location and Transitive Closure in Planar Structures, Proc. 29th Ann. Symp. on Found. of Comp. Sci. (FOCS) 1988, pp. 558–567.Google Scholar
  23. [23]
    H. Rohnert, A dynamization of the all pairs least cost path problem, In: K. Mehlhorn (ed.), 2nd Annual Symposium on Theoretical Aspects of Computer Science 1985, Lecture Notes in Computer Science Vol. 182, Springer-Verlag, Berlin, pp. 279–286.Google Scholar
  24. [24]
    R.E. Tarjan, Depth-First Search and Linear Graph Algorithms, SIAM J. Comput. 1 (1972) 146–160.CrossRefGoogle Scholar
  25. [25]
    W. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.Google Scholar
  26. [26]
    J. Westbrook and R.E. Tarjan, Maintaining Bridge-Connected and Biconnected Components On-Line, Tech. rep. CS-TR-228-89, Princeton University, 1989 (to appear in Algorithmica).Google Scholar
  27. [27]
    J. Westbrook, Fast Incremental Planarity Testing, Proc. 19th Int. Colloquium on Automata, Languages and Programming (ICALP) 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. A. La Poutré
    • 1
    • 2
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Department of Computer ScienceUtrecht UniversityTB UtrechtThe Netherlands

Personalised recommendations