A Greibach normal form for context-free graph grammars

  • Joost Engelfriet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 623)


Every context-free hypergraph grammar that generates a language of bounded degree can be transformed into an equivalent one that has the apex property, i.e., that cannot “pass” nodes from nonterminal to nonterminal. This generalizes Double Greibach Normal Form of context-free grammars. Moreover, it provides a natural grammatical characterization of the context-free hypergraph languages of bounded degree. For grammars with the apex property it is not possible to put a bound on the number of nonterminals in the right-hand sides of the productions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.Bauderon, B.Courcelle; Graph expressions and graph rewritings, Math. Systems Theory 20 (1987), 83–127CrossRefGoogle Scholar
  2. 2.
    J.Berstel; “Transductions and Context-free Languages”, Teubner, 1979Google Scholar
  3. 3.
    H.L.Bodlaender; The complexity of finding uniform emulations on paths and ring networks, Inform. Comput. 86 (1990), 87–106CrossRefGoogle Scholar
  4. 4.
    F.J.Brandenburg; On polynomial time graph grammars, Proc. STACS 88, Lecture Notes in Computer Science 294, Springer-Verlag, 1988, pp. 227–236Google Scholar
  5. 5.
    F.J.Brandenburg; The equivalence of boundary and confluent graph grammars on graph languages of bounded degree, in “Rewriting Techniques and Applications”, Lecture Notes in Computer Science 488, Springer-Verlag, 1991, pp. 312–322Google Scholar
  6. 6.
    B.Courcelle; An axiomatic definition of context-free rewriting and its application to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141–181CrossRefGoogle Scholar
  7. 7.
    B.Courcelle; On using context-free graph grammars for analyzing recursive definitions, in “Programming of future generation computers II”, Elsevier, Amsterdam, 1988, pp. 83–122Google Scholar
  8. 8.
    B.Courcelle; The monadic second-order logic of graphs. I: Recognizable sets of finite graphs, Inform. Comput. 85 (1990), 12–75.CrossRefGoogle Scholar
  9. 9.
    B.Courcelle, J.Engelfriet; A logical characterization of the sets of hypergraphs defined by hyperedge replacement grammars; Report 91–41, University of Bordeaux, June 1991Google Scholar
  10. 10.
    J.Engelfriet; Context-free NCE graph grammars, Proc. FCT '89, Lecture Notes in Computer Science 380, Springer-Verlag, 1989, pp. 148–161Google Scholar
  11. 11.
    J.Engelfriet, L.M. Heyker; The string generating power of context-free hypergraph grammars, JCSS 43 (1991), 328–360Google Scholar
  12. 12.
    J.Engelfriet, L.M.Heyker; The term-generating power of context-free hypergraph grammars and attribute grammars, to appear in Acta InformaticaGoogle Scholar
  13. 13.
    J.Engelfriet, L.M.Heyker; Hypergraph languages of bounded degree, Report 91-01, University of Leiden, January 1991Google Scholar
  14. 14.
    J.Engelfriet, L.M.Heyker, G.Leih; Context-free graph languages of bounded degree are generated by apex graph grammars, Report 91-16, Leiden University, August 1991Google Scholar
  15. 15.
    J.Engelfriet, G.Leih; Linear graph grammars: power and complexity, Inform. Comput. 81 (1989), 88–121CrossRefGoogle Scholar
  16. 16.
    J.Engelfriet, G.Leih, G. Rozenberg; Apex graph grammars and attribute grammars, Acta Informatica 25 (1988), 537–571Google Scholar
  17. 17.
    J.Engelfriet, G.Leih, G. Rozenberg; Nonterminal separation in graph grammars, Theor. Computer Science 82 (1991), 95–111CrossRefGoogle Scholar
  18. 18.
    J.Engelfriet, G.Leih, E. Welzl; Boundary graph grammars with dynamic edge relabeling, JCSS 40 (1990), 307–345Google Scholar
  19. 19.
    J.Engelfriet, G.Rozenberg; A comparison of boundary graph grammars and contextfree hypergraph grammars, Inform. Comput. 84 (1990), 163–206CrossRefGoogle Scholar
  20. 20.
    J.Engelfriet, G.Rozenberg; Graph grammars based on node rewriting: an introduction to NLC graph grammars, in “Graph Grammars and their Application to Computer Science”, Lecture Notes in Computer Science 532, Springer-Verlag, 1991, pp.12–23Google Scholar
  21. 21.
    S.Ginsburg, E.H.Spanier; Derivation bounded languages, JCSS 2 (1968), 228–250Google Scholar
  22. 22.
    S.A.Greibach; A new normal-form theorem for context-free phrase structure grammars, JACM 12 (1965), 42–52CrossRefGoogle Scholar
  23. 23.
    A.Habel; Hyperedge replacement: grammars and languages, Ph.D.Thesis, Bremen, 1989Google Scholar
  24. 24.
    A.Habel, H.-J.Kreowski; Some structural aspects of hypergraph languages generated by hyperedge replacement, Proc. STACS '87, LNCS 247, 1987, pp. 207–219Google Scholar
  25. 25.
    A.Habel, H.-J.Kreowski; May we introduce to you: hyperedge replacement, in “Graph-Grammars and their Application to Computer Science”, Lecture Notes in Computer Science 291, Springer-Verlag, 1987, pp. 15–26Google Scholar
  26. 26.
    M.A.Harrison; “Introduction to Formal Language Theory”, Addison-Wesley, 1978Google Scholar
  27. 27.
    C.Lautemann; Decomposition trees: structured graph representation and efficient algorithms, in Proc. CAAP '88, Lecture Notes in Computer Science 299, 1988, pp. 28–39Google Scholar
  28. 28.
    C.Lautemann; Efficient algorithms on context-free graph languages, Proc. ICALP '88, Lecture Notes in Computer Science 317, Springet-Verlag, 1988, pp. 362–378Google Scholar
  29. 29.
    T.Lengauer, E. Wanke; Efficient analysis of graph properties on context-free graph languages, in Proc. ICALP '88, LNCS 317, 1988, pp. 379–393Google Scholar
  30. 30.
    D.J.Rosenkrantz; Matrix equations and normal forms for context-free grammars, JACM 14 (1967), 501–507CrossRefGoogle Scholar
  31. 31.
    W.Vogler; On hyperedge replacement and BNLC graph grammars, in: Graph-Theoretic Concepts in Computer Science WG '89, LNCS 411, 1989, pp. 78–93Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Joost Engelfriet
    • 1
  1. 1.Department of Computer ScienceLeiden UniversityRA LeidenThe Netherlands

Personalised recommendations