Place bisimulations in Petri nets

  • C. Autant
  • Ph. Schnoebelen
Submitted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 616)


Place bisimulations are bisimulations between places of Petri nets. We propose a new definition for this basic (new) concept, study several derivatives and classify them.

The main practical application of place bisimulation is as a method for the simplification of nets in a semantically correct way. We show how this simplification can be done in polynomial time.


partial order theory of concurrency structure and behavior of nets bisimulation theory of nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABS91a]
    C. Autant, Z. Belmesk, and Ph. Schnoebelen. Strong bisimilarity on nets revisited (extended abstract). In Proc. PARLE'91, vol. II: Parallel Languages, Eindhoven, LNCS 506, pages 295–312. Springer-Verlag, June 1991.Google Scholar
  2. [ABS91b]
    C. Autant, Z. Belmesk, and Ph. Schnoebelen. Strong bisimilarity on nets revisited. Research Report 847-1, LIFIA-IMAG, Grenoble, March 1991.Google Scholar
  3. [BC87]
    G. Boudol and I. Castellani. On the semantics of concurrency: Partial orders and transition systems. In Proc. CAAP'87, Pisa, LNCS 249, pages 123–137. Springer-Verlag, March 1987.Google Scholar
  4. [BD87]
    E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory. Theoretical Computer Science, 55:87–136, 1987.CrossRefGoogle Scholar
  5. [BS90]
    J. Bradfield and C. Stirling. Verifying temporal properties of processes. In Proc. CONCUR'90, Amsterdam, LNCS 458, pages 115–125. Springer-Verlag, August 1990.Google Scholar
  6. [Gol88]
    U. Goltz. On representing CCS programs by finite Petri nets. In Proc. Math. Found. Comp. Sci. LNCS 324, pages 339–350. Springer-Verlag, 1988.Google Scholar
  7. [GS90]
    H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications. In Proc. 10th IFIP Conf. Protocol Specification, Testing and Verification, Ottawa, June 1990.Google Scholar
  8. [GV87]
    R. J. van Glabbeek and F. Vaandrager. Petri net models for algebraic theories of concurrency. In Proc. PARLE'87, vol. II: Parallel Languages, Eindhoven, LNCS 259, pages 224–242. Springer-Verlag, June 1987.Google Scholar
  9. [NT84]
    M. Nielsen and P. S. Thiagarajan. Degrees of non-determinism and concurrency: A Petri net view. In Proc. 4th Conf. on Foundations of Software Technology and Theor. Comp. Sci. Bangalore, India, LNCS 181, pages 89–117. Springer-Verlag, December 1984.Google Scholar
  10. [Old89]
    E.-R. Olderog. Strong bisimilarity on nets: a new concept for comparing net semantics. In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, Noordwijkerhout, LNCS 354, pages 549–573. Springer-Verlag, 1989.Google Scholar
  11. [Old91]
    E.-R. Olderog. Nets, Terms and Formulas, volume 23 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univ. Press, 1991.Google Scholar
  12. [Par81]
    D. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI Conf. on Th. Comp. Sci., LNCS 104, pages 167–183. Springer-Verlag, March 1981.Google Scholar
  13. [Pra86]
    V. R. Pratt. Modeling concurrency with partial orders. Int. J. Parallel Programming, 15(1):33–71, 1986.CrossRefGoogle Scholar
  14. [Vog91]
    W. Vogler. Bisimulation and action refinement. In Proc. STACS'91, Hamburg, LNCS 480, pages 309–321. Springer-Verlag, February 1991.Google Scholar
  15. [Wei89]
    W. P. Weijland. Synchrony and Asynchrony in Process Algebra. PhD thesis, Univ. Amsterdam, June 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. Autant
    • 1
  • Ph. Schnoebelen
    • 1
    • 2
  1. 1.Laboratoire d'Informatique Fondamentale et d'Intelligence ArtificielleInstitut Imag-CNRSGrenobleFrance
  2. 2.LIFIA-IMAGGrenoble CedexFrance

Personalised recommendations