Maximality preservation and the ST-idea for action refinements

  • Raymond Devillers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 609)


The paper shows, in the framework of labelled P/T nets, that strengthening classical bisimulations through a maximality preservation property or through the introduction of ST-configurations leads to equivalent bisimulation notions, that they are preserved by a large class of action refinements, that they may be characterized through specific refinements and that they are the coarsest equivalences preserved by refinements and implying the original bisimulations.


Bisimulation Concurrency Action refinement Petri nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Best and R. Devillers: Sequential and Concurrent Behaviour in Petri Net Theory. TCS 55, pp. 87–136 (1987).Google Scholar
  2. [2]
    E. Best, R. Devillers, A. Kiehn and L. Pomello: Concurrent Bisimulations in Petri Nets, Acta Informatica 28, pp. 231–264 (1991).Google Scholar
  3. [3]
    E.Best and C.Fernández: Notation and Terminology on Petri Net Theory. Arbeitspapiere der GMD Nr.195 (February 1987).Google Scholar
  4. [4]
    W.Brauer, R.Gold and W.Vogler: Behaviour and Equivalences Preserving Refinements of Petri Nets. In: Advances in Petri Nets 1990 (ed. G.Rozenberg), LNCS 483, pp.1–46 (1991).Google Scholar
  5. [5]
    F.Cherief and P.Schnoebelen: Τ-Bisimulations and Full Abstraction for Refinement of Actions. Technical report LIFIA-Imag (Grenoble, France), (1990).Google Scholar
  6. [6]
    Ph. Darondeau and P. Degano: Causal Trees. In Proc. 11th Int. Coll. on Automata and Languages — ICALP89, LNCS 372, pp. 234–248 (1989).Google Scholar
  7. [7]
    P. Degano, R.De Nicola and U. Montanari: Partial Ordering Description of Nondeterministic Concurrent Systems. In Proc. REX School on Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, LNCS 354, pp. 438–466 (1989).Google Scholar
  8. [8]
    R.Devillers: Maximality Preserving Bisimulation. Technical report LIT-214, Université Libre de Bruxelles (March 1990). To appear in TCS.Google Scholar
  9. [9]
    R.Devillers: Maximality Preserving Bisimilarity: Simplifications and Extensions. Technical report LIT-231, Université Libre de Bruxelles (May 1991). Abstract in the Proceedings of the Third Workshop on Concurrency and Compositionality (ed. E.Best and G.Rozenberg), Goslar (FRG). GMD-Studien 191, pp.80–82 (1991).Google Scholar
  10. [10]
    R.Devillers: Maximality Preservation and the ST-idea for Action Refinement (Full Report). Technical report LIT-242, Université Libre de Bruxelles (August 1991).Google Scholar
  11. [11]
    R.van Glabbeek: The Refinement Theorem for ST-Bisimulation semantics. Proc. IFIP Working Conference on Programming Concepts and Methods (ed. M.Broy and C.B.Jones), See of Galilee (1990).Google Scholar
  12. [12]
    R.van Glabbeek and U.Goltz: Equivalence Notions for Concurrent Systems and Refinement of Actions. Arbeitspapiere der GMD 366 (1989). Extended abstract in Proc. MFCS 89, LNCS 379, pp.237–248 (1989).Google Scholar
  13. [13]
    R.van Glabbeek and U. Goltz: Refinement of Actions in Causality Based Models. Proc. REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalism, Correctness, LNCS 430, pp. 267–300 (1990).Google Scholar
  14. [14]
    R.van Glabbeek and F.Vaandrager: Petri Net Models for Algebraic Theories of Concurrency. Proc. PARLE, vol.II (ed. Bakker et al.), LNCS 259, pp.224–242 (1987).Google Scholar
  15. [15]
    R.van Glabbeek and F.Vaandrager: The Difference between Splitting in n and n + 1. Abstract in the Proceedings of the Third Workshop on Concurrency and Compositionality (ed. E.Best and G.Rozenberg), Goslar (FRG). GMD-Studien 191, pp.117–121 (1991).Google Scholar
  16. [16]
    R.van Glabbeek and W.Weijland: Refinement in Branching Time Semantics. Proceedings of the International Conference on Algebraic Methodology and Software Technology — Iowa City (USA), pp.197–201 (1989).Google Scholar
  17. [17]
    R. Gorrieri and C.Laneve: Split and ST-semantics for CCS. Proceedings MFCS 91. Abstract in the Proceedings of the Third Workshop on Concurrency and Compositionality (ed. E.Best and G.Rozenberg), Goslar (FRG). GMD-Studien 191, pp.122–124 (1991).Google Scholar
  18. [18]
    R. Milner: Calculi for Synchrony and Asynchrony. TCS 25, pp. 267–310 (1983).Google Scholar
  19. [19]
    D.Park: Concurrency and Automata on Infinite Sequences. Proc. 5th GI Conference on Theoretical Computer Science (ed. P.Deussen), LNCS 104, pp.167–183 (1981)Google Scholar
  20. [20]
    L.Pomello: Some Equivalence Notions for Concurrent Systems. An Overview. In: Advances in Petri Nets 1985 (ed. G.Rozenberg), LNCS 222, pp.381–400 (1986).Google Scholar
  21. [21]
    L.Pomello: Observing Net Behaviour. In: Concurrency and Nets (ed. K.Voss et al.), Springer Verlag, pp.403–421 (1987).Google Scholar
  22. [22]
    G. Rozenberg and R. Verraedt: Subset Languages of Petri Nets. TCS 26, pp. 301–323 (1983).Google Scholar
  23. [23]
    A. Rabinovitch and B.A. Trakhtenbrot: Behavior Structures and Nets. Fundamenta Informaticae XI, pp. 357–404 (1988).Google Scholar
  24. [24]
    W. Vogler: Failures Semantics Based on Interval Semiwords is a Congruence for Refinement. Distributed Computing 4, pp. 139–162 (1991). Extended abstract in Proc. STACS'90, LNCS 415, pp.285–297 (1990).Google Scholar
  25. [25]
    W.Vogler: Bisimulation and Action Refinement. Technical report SFB-Bericht 342/10/90A, Technische Universität München (May 1990). An extended abstract of the first part may also be found in the Proceedings STACS 91, LNCS 480, pp.309-321 (1991). The second part has also been presented as “Deciding History Preserving Bisimilarity” at ICALP 91.Google Scholar
  26. [26]
    W.Vogler: Is Partial Order Semantics Necessary for Action Refinement? Technical report SFB-Bericht 342/1/91A, Technische Universität München (January 1991).Google Scholar
  27. [27]
    W.Vogler: Generalized OM-Bisimulation. Technical report SFB-Bericht 342/8/91A, Technische Universität München (May 1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Raymond Devillers
    • 1
  1. 1.Laboratoire d'Informatique ThéoriqueUniversité Libre de BruxellesBruxelles

Personalised recommendations