Tuteurs Intelligents et Intelligence Artificielle: problèmes posés en construction de figures géométriques

  • Richard Allen
  • Cyrille Desmoulins
  • Laurent Trilling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 608)


Our purpose is to illustrate, through the conception and realization of an ITS for the construction of geometric figures, an approach to the expression of the pedagogical contract based on first order logic. It is critical for the contract to be very precise as well as understandable and explanable throughout. This requires the teacher to define the specification of the goal to be attained and the context using tools with a precise semantics. The means of expression available to the student for constructing a solution must also possess a clear semantics. We show that a methodology associating a formula in a logic language which is common to the specification and to the solution makes it possible to give a first concrete definition of a given contract. We can then better grasp both the requirements for the contract not accounted for in a first stage and the constraints of implementation and efficiency. Certain points which still require improvement—e.g., the exact meaning of negation and the non particularity of constructions—are brought to light. Finally, we present the results of experiments with exercises typically found in geometry textbooks.


Nous Avons Geometry Textbook Pedagogical Contract Cette Restriction Nous Disposons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aida, H., Tanoka, H., Moto-Oka, T., “A Prolog Extension for Handling Negative Knowledege”, New Generation Computing, n∘1, Springer Verlag, 1983.Google Scholar
  2. 2.
    Ackerman, W., Solvable cases of the Decision Problem, North Holland, 1984.Google Scholar
  3. 3.
    Allen, R., Nicolas, O., Trilling, L., “Sur la correction d'une figure dans un système d'EIAO pour la géométrie”, Actes des Journées EIAO, PRC Intelligence Artificielle, Cachan, décembre 1989.Google Scholar
  4. 4.
    Allen, R., Nicolas, P., Trilling, L., “Figure Correctness in an Expert System for teaching Geometry”, Proceedings of the eight biennal conference of the Canadian society for computational studies of intelligence, Ottawa, May 22–25, 1990, pp. 154–160.Google Scholar
  5. 5.
    Apt, K.R., Blair, H., Walker, A., “Towards a theory of declarative knowledge”, J of ACM, 29, 1987, pp. 841–862.Google Scholar
  6. 6.
    Baulac, Y., Un micromonde de géométrie, Cabri-géomètre, Thèse de l'université Joseph Fourier Grenoble 1990.Google Scholar
  7. 7.
    Chou, S.C., “A Method for the Mechanical Derivation of Formulas in Elementary Geometry”, Journal of Automated Reasoning, vol. 3, 1987, pp. 291–299Google Scholar
  8. 8.
    Desmoulins, C., Trilling, L., “Translation of a figure specification into a logical formula in a system for teaching geometry”, Proceedings of the Sixth International PEG Conference, Rapallo, Italy, 1991, pp.292–303.Google Scholar
  9. 9.
    Fauvergue, P., Mathématiques 4e, Editions CASTEILLA, 1988.Google Scholar
  10. 10.
    Gras R., “Aide logicielle aux problèmes de démonstration géométrique dans l'enseignement secondaire”, Petit X, 17, Grenoble, 1988, pp. 65–83.Google Scholar
  11. 11.
    Grégoire, E., Logiques non monotones et intelligence artificielle, Hermès, paris, 1990.Google Scholar
  12. 12.
    Kowalski, R., Logic for Problem Solving, North-Holland, New York, 1979.Google Scholar
  13. 13.
    Laborde, J.-M. Trilling, L., “Conception et réalisation d'un système intelligent d'apprentissage de la géométrie”, Présentation de projet LSDD-IMAG, Grenoble, 1989.Google Scholar
  14. 14.
    Leasimbe, “Interfaces non-classiques en Intelligence Arificielle”, Journées PRC IA, Toulouse 1988.Google Scholar
  15. 15.
    Leman, S., Construction et correction d'une formule logique associée à figure géométrique Cabri, Projet de DEA d'Informatique, IMAG-LGI, Grenoble, 1991.Google Scholar
  16. 16.
    Le Nestour, A., Rouxel, R., rapport de stage C.R.E.F.F.I.B., Rennes, 1984.Google Scholar
  17. 17.
    McCarthy, J., “Circumscription: a form of non-monotonic reasoning”, Artificial Intelligence, 13, 1980, pp. 27–39.Google Scholar
  18. 18.
    Py, D., “MPENTONIEZH, an I.T.S in Geometry”, Proceedings of the 4th International Conference on AI and Education, Amsterdam, 1989, pp. 202–209.Google Scholar
  19. 19.
    Py, D., Reconnaissance de plan pour l'aide à la démonstration dans un tuteur intelligent de la géométrie, Thèse de l'université de Rennes, 1990.Google Scholar
  20. 20.
    Thaysse, A., et al., Approche logique de l'intelligence artificielle, Dunod, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Richard Allen
    • 1
  • Cyrille Desmoulins
    • 1
  • Laurent Trilling
    • 1
  1. 1.IMAG/LGIGrenoble cedexFrance

Personalised recommendations