Advertisement

Theoretical study of symmetries in propositional calculus and applications

  • Belaid Benhamou
  • Lakhdar Sais
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 607)

Abstract

Many propositional calculus problems (for example the Ramsey or the pigeon hole problems) can quite naturally be represented by a small set of first order logical clauses which becomes a very large set of propositional clauses when we substitute the variables by the constants of the domain. In many cases, the set of clauses contains several symmetries i.e. the set of clauses remains invariant under a permutation of variable names. We will show how we can shorten the proofs of such problems. We present an algorithm which detects the symmetries and explain how the symmetries are introduced and used in the following methods: Slri, Davis and Putnam and Semantic Evaluation. With symmetries we have got good results on many known problems such pigeon hole, Schur's lemma, Ramsey, the eight queen etc. The most interesting one is that we have been able to prove for the first time the unsatisfiability of the Ramsey problem for 17 vertices and 3 colors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Benhamou and L. Sais. Etude des symétries en calcul propositionnel. Master's thesis, GIA Luminy (Marseille), 1990.Google Scholar
  2. 2.
    B. Benhamou and L. Sais. Etude des symétries en calcul propositionnel. Technical Report 1, Université de provence, 1991.Google Scholar
  3. 3.
    W. Bibel. Short proofs of the pigeon hole formulas based on the connection method. Automated reasoning, (6):287–297, 1990.Google Scholar
  4. 4.
    S. Cook. A short proof of the pigeon hole principle using extended resolution. SIGACT News, (8):28–32, oct.-dec. 1976.Google Scholar
  5. 5.
    C. Cubbada and M. D. Mouseigne. Variantes de l'algorithme de SL-Résolution avec retenue d'information. PhD thesis, GIA Luminy (Marseille), 1988.Google Scholar
  6. 6.
    M. Davis and H. Putnam. A computing procedure for quatification theory. JACM, (7):201–215, 1960.Google Scholar
  7. 7.
    J. Kalbfleisch and R. Stanton. On the maximal triangle-free edge-chromatic graphs in three colors. combinatorial theory, (5):9–20, 1969.Google Scholar
  8. 8.
    R. Kowalski and D. Kuehner. Linear resolution with selection function. Artificial Intelligence, (2):227–260, 1971.Google Scholar
  9. 9.
    B. Krishnamurty. Short proofs for tricky formulas. Acta informatica, (22):253–275, 1985.Google Scholar
  10. 10.
    B. Krishnamurty and R. Moll. Examples of hard tautologies in the propositionnal calculus, 1981.Google Scholar
  11. 11.
    D. W. Loveland. A linear format for resolution. In Springer, editor, Lecture notes in computer science, number 125, 1970.Google Scholar
  12. 12.
    R. Lyndon. Notes of logic. Van Nostrand Mathematical Studies, 1964.Google Scholar
  13. 13.
    L. Oxusoff and A. Rauzy. L'évaluation sémantique en calcul propositionnel. PhD thesis, GIA — Luminy (Marseille), 1989.Google Scholar
  14. 14.
    J. A. Robenson. Teorem proving on computer. JACM, pages 163–174, 1963.Google Scholar
  15. 15.
    I. SCHUR, Uber die kongruenz x m+ym=zmmod(p). J ber Deutsch Verein, (25):114–116, 1916.Google Scholar
  16. 16.
    G. S. Tseitin. On the complexity of derivation in propositional calculus. In Structures in the constructive Mathematics and Mathematical logic, pages 115–125. H.A.O Shsenko, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Belaid Benhamou
    • 1
  • Lakhdar Sais
    • 1
  1. 1.L.I.U.P.-Université de ProvenceMarseille cedex 3France

Personalised recommendations