Advertisement

Back and forth bisimulations on prime event structures

  • Ferroudja Cherief
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 605)

Abstract

Back and forth bisimulations have been first introduced in [DNMV90]. In this paper, we propose a definition of back and forth bisimulalion for event structures. We show that our proposal can be adapted in a uniform way to yield step back and forth bisimulalion and pomset back and forth bisimulalion. We investigate these new equivalences and compare them to other branching time semantics.

Key words

Semantics of parallelism Concurrency Event structures bisimulations back and forth bisimulations refinement of actions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BDKP89]
    E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri Nets. Acta Informatica, 28, pp 231–264, 1991CrossRefGoogle Scholar
  2. [CDMP87]
    L. Castellano, G. De Michelis, and L. Pomello. Concurrency versus interleaving: An instructive example. Bull. EATCS 31, pp 12–15, 1987Google Scholar
  3. [CLS92]
    F. Cherief, F. Laroussinie, and S. Pinchinat. Modal Logics with Past for True Concurrency. Submitted to CONCUR'92, february 1992.Google Scholar
  4. [CS91]
    F. Cherief and Ph. Schnoebelen. τ-bisimulations and full abstration for refinement of actions. Inf. Proc. Letters. 40, November 1991, pp 219–222.CrossRefGoogle Scholar
  5. [DNF90]
    R. De Nicola, G.L Ferrari. Observational Logics And Concurrency Models. In Proc. 10th Conf. On Fondations of Software Technology and Theoretical Computer Science, Bangalore, India, LNCS 472, pp 301–315Google Scholar
  6. [DNV90]
    R. De Nicola, F. Vaandrager. Three Logics For Branching Bisimulation. (extended abstract). In Proc. 5th IEEE Symp. Logic in Computer Science, Philadelphia, PA, pp 118–129, June 1990.Google Scholar
  7. [DNMV90]
    R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and Forth Bisimulations. In Proc. CONCUR'90, Amsterdam, LNCS 458, pp 152–165. Springer-Verlag, August 1990.Google Scholar
  8. [GG89]
    R.J. v. Glabbeek, U. Goltz. Refinement of actions in causality based models. In Stepwise Refinement of Distributed Systems. Models, Formalisms, Correctness, Mook, LNCS 430, pp 267–300. Springer-Verlag, May 1989.Google Scholar
  9. [Gla90a]
    R.J. v. Glabbeek. Comparative Concurrency Semantics and Refinement of actions. PhD thesis. Free University of Amsterdam, May 1990.Google Scholar
  10. [Gla90b]
    R.J. v. Glabbeek. The refinement theorem for ST-bisimulation semantics. In Proc. IFIP Working Conf. on Programming Concepts and Methods, Sea of Galilee, Israel 1990.Google Scholar
  11. [GW89a]
    R.J.v. Glabbeek, W.P. Weijland. Branching time and abstraction in bisimulation semantics. (extended abstract). In Information Processing' 89 (G.X.Ritter, ed.). Elsevier Science Publishers B.V (North Holland) 1989, pp 613–618Google Scholar
  12. [GW89b]
    R.J.v. Glabbeek, W.P. Weijland. Refinement in branching time semantics. In Proc. AMAST Conf., Iowa City, pp 197–201, 1989.Google Scholar
  13. [NPW81]
    M. Nielsen, G.D. Plotkin, and G. Winskel. Petri nets, event structures and domains Part I. Theor. Comput. Sci., 13(1):85–108, 1981.CrossRefGoogle Scholar
  14. [Pra86]
    V.R. Pratt. Modelling concurrency with partial orders. International Journal of Parallel Programming. 15(1), pp33–71, 1986.CrossRefGoogle Scholar
  15. [RT88]
    A. Rabinovich and B. A. Trakhtenbrot. Behaviour structures and nets. Fundamenta Informaticae, 11:357–404, 1988.Google Scholar
  16. [Vog90]
    W. Vogler. Bisimulation and action refinement. Proc. STACS'91, Hamburg, LNCS 480, pp 309–321, Springer Verlag. February 91.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Ferroudja Cherief
    • 1
  1. 1.Lifia, Institut ImagGrenoble CedexFrance

Personalised recommendations