Advertisement

The KEEP model, a knowledge engineering process model

  • Susanne Neubert
  • Rudi Studer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 599)

Abstract

The idea of building a specification in the first phase of modeling a system, a principle known from Software Engineering, has been transferred to the area of knowledge engineering. In the context of the so-called model-based knowledge engineering, KADS is a very popular methodology ([BWS87], [WSB91], [WSG89], [HKL89], [KLV89]). However, KADS only provides some basic principles but no complete method how the knowledge engineer should perform his tasks. Therefore, the knowledge engineering process model — the so-called KEEP model — was developed as a guideline for the process of model-based knowledge engineering in the sense of KADS.

The KEEP model resulted from some experience in using the KADS methodology and an assessment of the life-cycle model of Hickman et. al. [HKL89]. The KEEP model is described at different layers of abstraction with the help of a dataflow diagram to give a detailed and structured description of the knowledge engineer's tasks and its results. Furthermore, the KEEP model includes a specification of the control flow for determining the order in which the different activities have to be carried out.

Keywords

KEEP model conceptual model knowledge acquisition knowledge elicitation knowledge collection knowledge interpretation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [AFL91a]
    Angele, J.; Fensel, D.; Landes, D.; and Studer, R: KARL: An Executable Language for the Conceptual Model. In: Proceedings of the Knowledge Acquisition Workshop AKW'91, October 6–11, Banff, Canada, 1991Google Scholar
  2. [AFL91b]
    Angele, J.; Fensel, D.; Landes, D.; and Studer, R: Sisyphus — No Problem with KARL. In Proceedings of the 5th European Knowledge Acquisition Workshop EKAW'91, Crieff, Scotland, May 20–24, 1991Google Scholar
  3. [AHS90]
    Akkermans, H.; Harmelen, van F,: Schreiber, G.; Wielinga, B.: A Formalisation of Knowledge-Level Models for Knowledge Acquisition. Submitted to the International Journal of Intelligent Systems, 1990Google Scholar
  4. [AnW90]
    Anjewierden, A.; Wielemaker, J.: Shelley — Computer Aided Knowledge Engineering. In: Current Trends in KA, IOS 1990Google Scholar
  5. [Boe86]
    Boehm, B.W.: A Spiral Model of Software Development and Enhancement, ACM SIGSOFT Software Engineering Notes, vol.11, no 4, p. 14–24, 8/1986Google Scholar
  6. [BRW89]
    Breuker, J.; and Wielinga, B.: Models of Expertise in Knowledge Acquisition. In Topics in Expert Systems Design, G. Guida and C. Tasso (eds.), Elsevier Science Publisher B. V., North-Holland, 1989Google Scholar
  7. [BWS87]
    Breuker, J.; Wielinga, B.; Someren, M.v.; de Hoog, R.: Schreiber, G.; de Greef, P.; Bredeweg, B.; Wielemaker, J.; and Billault, J.-P.: Model-Driven Knowledge Acquisition: Interpretation Models. Esprit Project P1098, University of Amsterdam (The Netherlands), 1987Google Scholar
  8. [CLA85]
    Clancey, W.J.: Heuristic classification. In Artificial Intelligence 27, 1985, 289–350.CrossRefGoogle Scholar
  9. [DeS87]
    Delisle, N.; Schwartz, M.: Neptune: A hypertext system for CAD applications. In: Proceedings ACM SIGMOD'86, Washington, DC, May, 28–30 1986, pp 132–142Google Scholar
  10. [DoT90]
    Dorfman, M.; Thayer, R.: Standards, Guidelines, and Examples on System and Software Requirements Engineering. IEEE Computer Society Press, Los Alamitos, California, 1990Google Scholar
  11. [dGB85]
    de Greef, P.; Breuker, J.: A case study in structured knowledge acquisition. In Proceedings of the 9th IJCAI, Los Angeles, 1985, pp 390–392Google Scholar
  12. [Fen91]
    Fensel, D.: An Introduction into KADS. Research Report no. 226, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, University of Karlsruhe, 1991Google Scholar
  13. [FCA91]
    Ford, K.; Canas, A.; Adams-Webber, J.: Explanation as a Knowledge Acquisition Issue. In: Proceedings of the 8th National Conference on Artificial Intelligence AAAI'91, Workshop Knowledge Acquisition, Anaheim, California, July 14–19,1991Google Scholar
  14. [HKL89]
    Hickman, F.R.; Killin, J.L.; Land, L.; Mulhall, T.; Porter, D.; and Taylor, R.M., Analysis for Knowledge-Based Systems: a practical guide to the KADS methodology, Ellis Horwood Limited, Chichester, GB, 1989Google Scholar
  15. [KLV89]
    Karbach, W., Linster, M., Voss, A.: Model-based approaches: One label — one idea? In Wielinga, B.; Boose, J.; Gaines, B.; Schreiber, G.; & van Someren, M., editors: Current trends in Knowledge Acquisition, pp 173–189. IOS Press, Amsterdam, 1989Google Scholar
  16. [KVS91]
    Karbach, W.; Voß, A.; Schuckey, R.; Drouven, U.: MODEL-K: Prototyping at the Knowledge Level. Proceedings of the 11th International Workshop Expert Systems & Their Applications, Avignon, 1991Google Scholar
  17. [MGH89]
    McGraw, K.L.; and Harbison-Briggs, K.: Knowledge Acquisition — Principles and Guidelines, Prentice-Hall International, Inc., Englewood Cliffs, NJ, 1989Google Scholar
  18. [Mus89]
    Musen, M.: Automated Generation of Model-Based Knowledge-Acquisition Tools, Research Notes in Artificial Intelligence, Pitman Publishing, London, 1989Google Scholar
  19. [MYL89]
    Malone, T.; Yu, K.; Lee, J.: What Good are Semistructured Objects? Adding Semiformal Structure to Hypertext. Research Report of Massachusetts Institute of Technology, CCSTR #102, SSM WP #3064-89-MS, 1989Google Scholar
  20. [New82]
    Newell, A.: The knowledge level, Artificial Intelligence, Vol. 18, 1982, pp 87–127CrossRefGoogle Scholar
  21. [Neu92]
    Neubert, S.: Einsatz von Hypermedia im Bereich der Modellbasierten Wissensakquisition. To appear in: Expertensysteme in der Wirtschaft 1992 — Anwendungen und Integration mit Hypermedia. Herausgeber: Biethahn, J.; Bogaschewsky, R.; Hoppe, U., Gabler Verlag, 1992 (in German)Google Scholar
  22. [Nie90]
    Nielsen, J.: Hypertext & hypermedia. Academic press, San Diego, London, 1990Google Scholar
  23. [Ohl92]
    Ohlgart, C.: Spezifikation eines Wissensbasierten Systems zur Konfiguration eines Versicherungsschutzes für Privatkunde. Diploma Theses at the University of Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, 1992 (in German)Google Scholar
  24. [Roy70]
    Royce, W. W.: Managing the Development of Large Software Systems: Concepts and Techniques. In: Proceedings WESCON, August 1970Google Scholar
  25. [Sch91]
    Schweier, T.: Modellierung von Expertenwissen Über Maßnahmen zur Emissionsminderung. Diploma Theses at the University of Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, 1991 (in German)Google Scholar
  26. [ShS90]
    Schütt, H.; Streitz, N.: HyperBase: A Hypermedia Engine based on a Relational Database Management System. Working papers of GMD no. 469, St. Augustin, 1990Google Scholar
  27. [ShK89]
    Shneiderman, B.; Kearsley, G.: Hypertext Hands-on!. An Introduction to a New Way of Organizing and Accessing Information. Addision-Wesley Publishing Company, Massachusetts, 1989Google Scholar
  28. [SpW91]
    Springi, S.; Wenger, D.: Generic Techniques in EMA: A Model-based Approach for Knowledge Acquisition. In: Proceedings of the Knowledge Acquisition Workshop AKW'91, October 6–11, Banff, 1991Google Scholar
  29. [Ste90]
    Sten, K.: Einsatzmöglichkeiten von Hypertext in Wissensbasierten Systemen.Diploma Theses at the University of Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, 1990 (in German)Google Scholar
  30. [SWP91]
    Springi, S.; Wenger D.; Probst, A.: Project Sisyphus, EMA Approach. In Proceedings of the 5th European Knowledge Acquisition Workshop EKAW91, Crieff, Scotland, May 20–24,1991Google Scholar
  31. [Tul89]
    Tully, C: Representing and Enacting the Software Process. Proceedings of the 4th International Software Process Workshop, Devon, UK, 1988. ACM Sigsoft Software Engineering Notes, Volume 14, nr. 4, June 1989Google Scholar
  32. [Wet90]
    Wetter, T.: First Order Logic Foundation of the KADS Conceptual Model. In: Current Trends in Knowledge Acquisition, Wielinga et. al. (eds.), IOS Press, Amsterdam, 1990, pp 356–375.Google Scholar
  33. [WSB91]
    Wielinga, B.J.; Schreiber, A.Th.; Breuker, J.A.: KADS: A Modelling Approach to Knowledge Engineering. ESPRIT Project P5248 KADS-II, An advanced and Comprehensive Methodology for Integrated KBS Development, Amsterdam, 1991Google Scholar
  34. [WiS90]
    Wielinga, B.; and Schreiber, G.: KADS: model based KBS development. In Proceedings of the 14th German Workshop on Artificial Intelligence GWAI-90 (Eringerfeld, September 10–14), 1990, pp 322–333Google Scholar
  35. [WSG89]
    Wielinga, B.; Schreiber, G.; and de Greef, P.: Synthesis Report. Esprit Project P1098, UvA-Y3-PR-001, University of Amsterdam (The Netherlands), 1989Google Scholar
  36. [You89]
    Yourdon, E.: Modern Structured Analysis. Prentice-Hall International Editions, Englewood Cliffs, NJ07632Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Susanne Neubert
    • 1
  • Rudi Studer
    • 1
  1. 1.Institut für Angewandte Informalik und Formale BeschreibungsverfahrenUniversität Karlsrube (TH)Karlsruhe 1Germany

Personalised recommendations