Skip to main content

Monotonous Bisector* Trees — a tool for efficient partitioning of complex scenes of geometric objects

  • Geometric Algorithms
  • Chapter
  • First Online:
Data structures and efficient algorithms

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 594))

Abstract

We are concerned with the problem of partitioning complex scenes of geometric objects in order to support the solutions of proximity problems in general metric spaces with an efficiently computable distance function. We present a data structure called Monotonous Bisector Tree, which can be regarded as a divisive hierarchical approach of centralized clustering methods (compare [3] and [12]). We analyze some structural properties showing that Monotonous Bisector Trees are a proper tool for a general representation of proximity information in complex scenes of geometric objects.

Given a scene of n objects in d-dimensional space and some Minkowski-metric. We additionally demand a general position of the objects and that the distance between a point and an object of the scene can be computed in constant time. We show that a Monotonous Bisector Tree with logarithmic height can be constructed in optimal 0(n log n) time using 0(n) space. This statement still holds if we demand that the cluster radii, which appear on a path from the root down to a leaf, should generate a geometrically decreasing sequence.

We report on extensive experimental results which show that Monotonous Bisector Trees support a large variety of proximity queries by a single data structure efficiently.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under contract (No 88/6-4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Bentley, Multidimensional Binary Search Trees Used for Associative Searching, Communications of the ACM, Vol. 18, No. 9, 1975

    Google Scholar 

  2. L. P. Chew, R. L. Drysdale III, Voronoi Diagrams Based on Convex Distance Functions, 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, 1985

    Google Scholar 

  3. F. Dehne and H. Noltemeier, A Computational Geometry Approach to Clustering Problems, Proceedings of the 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, 1985

    Google Scholar 

  4. F. Dehne and H. Noltemeier, Voronoi Trees and Clustering Problems, Information Systems, Vol. 12, No. 2, Pergamon London, 1987.

    Google Scholar 

  5. H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs in Computer Science, Vol. 10, Springer-Verlag, Berlin-Heidelberg, 1987

    Google Scholar 

  6. O. Günther, Efficient Structures for Geometric Data Management, LNCS 337 (ed. G. Goos, J. Hartmanis), Springer, Berlin-Heidelberg, 1988

    Google Scholar 

  7. H. Heusinger, Clusterverfahren für Mengen geometrischer Objekte, Report, Universität Würzburg, 1989

    Google Scholar 

  8. H. Heusinger und H. Noltemeier, On Separable Clusterings, Journal of Algorithms, Vol. 10, Academic Press, 1989

    Google Scholar 

  9. I. Kalantari, G. McDonald, A Data Structure and an Algorithm for the Nearest Point Problem, IEEE Transactions on Software Engineering, Vol. SE-9, No.5, 1983

    Google Scholar 

  10. N. Megiddo, Linear-Time Algorithms for Linear Programming in IR 3 and Related Problems, SIAM Journal of Comput., Vol. 12, 1983

    Google Scholar 

  11. F. Murtagh, A Survey of Recent Advances in Hierarchical Clustering Algorithms, The Computer Journal, Vol. 26, No. 4, 1983

    Google Scholar 

  12. H. Noltemeier, Voronoi Trees and Applications, in H. Imai (ed.): ”Discrete Algorithms and Complexity” (Proceedings), Fukuoka/Japan, 1989

    Google Scholar 

  13. H. Noltemeier, Layout of Flexible Manufacturing Systems — Selected Problems, Proceedings of the Workshop on Applications of Combinatorial Optimization in Science and Technology (COST), New Brunswick, New Jersey, 1991

    Google Scholar 

  14. F.P. Preparata and M.I. Shamos, Computational Geometry — An Introduction, Springer-Verlag, New York, 1985

    Google Scholar 

  15. H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys, Vol. 16, 1984

    Google Scholar 

  16. D. E. Willard, Polygon Retrieval, SIAM J. Comput., Vol. 11,No. 1, 1982

    Google Scholar 

  17. C. Zirkelbach, Monotonous Bisector Trees and Clustering Problems, Techn. Report, Universität Würzburg, 1990

    Google Scholar 

  18. C. Zirkelbach, Partionierung mit Bisektoren, Techn. Report, Universität Würzburg, 1990

    Google Scholar 

  19. C. Zirkelbach, Monotone Bisektor * Bäume unter Minkowski-Metrik, Techn. Report, Universität Würzburg, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Monien Th. Ottmann

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noltemeier, H., Verbarg, K., Zirkelbach, C. (1992). Monotonous Bisector* Trees — a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds) Data structures and efficient algorithms. Lecture Notes in Computer Science, vol 594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55488-2_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-55488-2_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55488-2

  • Online ISBN: 978-3-540-47103-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics