Monotonous Bisector* Trees — a tool for efficient partitioning of complex scenes of geometric objects

  • H. Noltemeier
  • K. Verbarg
  • C. Zirkelbach
Geometric Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 594)


We are concerned with the problem of partitioning complex scenes of geometric objects in order to support the solutions of proximity problems in general metric spaces with an efficiently computable distance function. We present a data structure called Monotonous Bisector Tree, which can be regarded as a divisive hierarchical approach of centralized clustering methods (compare [3] and [12]). We analyze some structural properties showing that Monotonous Bisector Trees are a proper tool for a general representation of proximity information in complex scenes of geometric objects.

Given a scene of n objects in d-dimensional space and some Minkowski-metric. We additionally demand a general position of the objects and that the distance between a point and an object of the scene can be computed in constant time. We show that a Monotonous Bisector Tree with logarithmic height can be constructed in optimal 0(n log n) time using 0(n) space. This statement still holds if we demand that the cluster radii, which appear on a path from the root down to a leaf, should generate a geometrically decreasing sequence.

We report on extensive experimental results which show that Monotonous Bisector Trees support a large variety of proximity queries by a single data structure efficiently.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Bentley, Multidimensional Binary Search Trees Used for Associative Searching, Communications of the ACM, Vol. 18, No. 9, 1975Google Scholar
  2. [2]
    L. P. Chew, R. L. Drysdale III, Voronoi Diagrams Based on Convex Distance Functions, 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, 1985Google Scholar
  3. [3]
    F. Dehne and H. Noltemeier, A Computational Geometry Approach to Clustering Problems, Proceedings of the 1st ACM Symposium on Computational Geometry, Baltimore, Maryland, 1985Google Scholar
  4. [4]
    F. Dehne and H. Noltemeier, Voronoi Trees and Clustering Problems, Information Systems, Vol. 12, No. 2, Pergamon London, 1987.Google Scholar
  5. [5]
    H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs in Computer Science, Vol. 10, Springer-Verlag, Berlin-Heidelberg, 1987Google Scholar
  6. [6]
    O. Günther, Efficient Structures for Geometric Data Management, LNCS 337 (ed. G. Goos, J. Hartmanis), Springer, Berlin-Heidelberg, 1988Google Scholar
  7. [7]
    H. Heusinger, Clusterverfahren für Mengen geometrischer Objekte, Report, Universität Würzburg, 1989Google Scholar
  8. [8]
    H. Heusinger und H. Noltemeier, On Separable Clusterings, Journal of Algorithms, Vol. 10, Academic Press, 1989Google Scholar
  9. [9]
    I. Kalantari, G. McDonald, A Data Structure and an Algorithm for the Nearest Point Problem, IEEE Transactions on Software Engineering, Vol. SE-9, No.5, 1983Google Scholar
  10. [10]
    N. Megiddo, Linear-Time Algorithms for Linear Programming in IR 3 and Related Problems, SIAM Journal of Comput., Vol. 12, 1983Google Scholar
  11. [11]
    F. Murtagh, A Survey of Recent Advances in Hierarchical Clustering Algorithms, The Computer Journal, Vol. 26, No. 4, 1983Google Scholar
  12. [12]
    H. Noltemeier, Voronoi Trees and Applications, in H. Imai (ed.): ”Discrete Algorithms and Complexity” (Proceedings), Fukuoka/Japan, 1989Google Scholar
  13. [13]
    H. Noltemeier, Layout of Flexible Manufacturing Systems — Selected Problems, Proceedings of the Workshop on Applications of Combinatorial Optimization in Science and Technology (COST), New Brunswick, New Jersey, 1991Google Scholar
  14. [14]
    F.P. Preparata and M.I. Shamos, Computational Geometry — An Introduction, Springer-Verlag, New York, 1985Google Scholar
  15. [15]
    H. Samet, The Quadtree and Related Hierarchical Data Structures, ACM Computing Surveys, Vol. 16, 1984Google Scholar
  16. [16]
    D. E. Willard, Polygon Retrieval, SIAM J. Comput., Vol. 11,No. 1, 1982Google Scholar
  17. [17]
    C. Zirkelbach, Monotonous Bisector Trees and Clustering Problems, Techn. Report, Universität Würzburg, 1990Google Scholar
  18. [18]
    C. Zirkelbach, Partionierung mit Bisektoren, Techn. Report, Universität Würzburg, 1990Google Scholar
  19. [19]
    C. Zirkelbach, Monotone Bisektor * Bäume unter Minkowski-Metrik, Techn. Report, Universität Würzburg, 1991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. Noltemeier
  • K. Verbarg
  • C. Zirkelbach
    • 1
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgWützburgFed. Rep. of Germany

Personalised recommendations