A constructive logic approach to database theory

  • Pierangelo Miglioli
  • Ugo Moscato
  • Mario Ornaghi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 592)


In this paper we propose an approach to database theory based on a constructive logic. The semantics here assumed is a particular one; it is based on the notion of info(K,F) (the information type of F), where K is the set of constants of a first order language L, F is a formula of L and info(K,F) is the set of all the possible pieces of information (within L) on the “truth” of F.

This constructive semantics will be used to treat problems related to relational databases such as disjunctive information and null value.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bra]
    Brauer W. (ed.)-Net Theory and Applications-LNCS,Springer Verlag,1980.Google Scholar
  2. [GMN]
    Gallaire H., Minker J., Nicolas J.M.-Logic and Databases: A deductive approach-Computing Surveys 16, 2, 1984.Google Scholar
  3. [HN]
    Hayashi S., Nakano H.-PX: a computational logic-MIT Press, 1989.Google Scholar
  4. [Kle]
    Kleene S.-Introduction to metamathematics-Wolters-Noordhoff, 1952.Google Scholar
  5. [Lloy]
    Lloyd J. W.-Foundations of logic programming-Springer Verlag, 1987.Google Scholar
  6. [LT1]
    Lloyd J., Topor W.-A Basis for Deductive Database Systems-J. Logic Programming 2, 2, 1985.CrossRefGoogle Scholar
  7. [LT2]
    Lloyd J., Topor W.-A Basis for Deductive Database Systems II-J. Logic Programming 3, 1, 1986.CrossRefGoogle Scholar
  8. [Med]
    Medvedev T.-Finite problems-Sov. Math. Dok. 3, 1962.Google Scholar
  9. [MMO3]
    Miglioli P., Moscato U., Ornaghi M.-Constructive proofs as programs executable by PrT nets-in Girault C., Reisig W. (ed.) Application and theory of Petri nets, Informatik-Fachberikte, n. 52, Springer Verlag, 1982.Google Scholar
  10. [MMOU]
    Miglioli P., Moscato U., Ornaghi M., Usberti G.-A costructivism based on classical truth-Notre Dame Journal of Formal Logic, vol. 30, n.1, 1989.Google Scholar
  11. [MMOQU]
    Miglioli P., Moscato U., Ornaghi M., Quazza S., Usberti G.-Some results on intermediate constructive logics-Notre Dame Journal of Formal Logic, vol 30, n.4, 1989.Google Scholar
  12. [Pra]
    Prawitz D.-Natural deduction: a proof-theoretical study-Almqvist & Wiksell, 1965.Google Scholar
  13. [Rei]
    Reiter R.-Toward a Logical Reconstruction of Relational Database Theory-in Brodie M., Mylopoulos J., Schmidt J.W. (eds.), On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases and Programming Languages, Springer Verlag, 1984.Google Scholar
  14. [Trol]
    Troelstra A.S.-Metamathematical investigations of intuitionistic arithmetic and analysis-LNM, n.344, Springer Verlag, 1973.Google Scholar
  15. [Tro2]
    Troelstra A.S.-Constructive Mathematics-in Barwise J. (ed.) Handbook of Mathematical Logic, North Holland, 1980.Google Scholar
  16. [Vor]
    Voronkov A.-Towards the theory of programs in constructive logic-LNCS n. 432 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Pierangelo Miglioli
    • 1
  • Ugo Moscato
    • 1
  • Mario Ornaghi
    • 1
  1. 1.Department of Information ScienceUniversity of MilanItaly

Personalised recommendations