Multiplication as parallel as possible

  • P. Lippitsch
  • K. C. Posch
  • R. Posch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 591)


Public key encryption/decryption with modulus arithmetic is used in a variety of cryptographic applications. A tough computational problem arises due to the very long integer arithmetic needed. Usually serial-parallel multiplication is employed, which slows down speed to the order of k=log2(n), where n is the modulus. This paper describes a possible implementation of a method using parallel multiplication schemes at the order of log(k) in combination with incomplete modulus reduction. As many partial products as possible are implemented in parallel (As Parallel As Possible, APAP). This leads to a mixture of linear and logarithmic time complexity. This paper describes a hardware solution for the APAP-multiplier with optimized dynamic adder cells without storage elements. Additional available silicon area can be traded against speedup in a smooth way. The underlying method is described and proved in [Posch90]. Using 664 bit long operands, a 40mm2 chip manufactured in 1.2 micron CMOS technology can reach an RSA encryption/decryption rate of 240 kbits/second.


public key cryptosystems cryptography hardware algorithms VLSI parallel multiplier high speed multiplier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Orton87]
    Orton G.A. VLSI implementation of public-key encryption algorithms; Proceedings on Advances in Cryptology — CRYPTO '86, Springer-Verlag, (Berlin, 1987), pp 277–301.Google Scholar
  2. [Posch90]
    Posch K.C., Posch R.: Approaching encryption at ISDN speed using partial parallel modulus multiplication; Microprocessing and Microprogramming 29 (1990) 177–184.Google Scholar
  3. [Postl88]
    Postl H.: Fast Evaluation of Dickson Polynomials; Contributions to General Algebra 6, B.G. Teubner-Verlag, (1988).Google Scholar
  4. [RSA78]
    Rivest R., A. Shamir, L. Adlemann: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems; Comm. of the ACM (Feb.1978), pp 120–126.Google Scholar
  5. [Rivest84]
    Rivest R. L.: RSA Chips (Past/Present/Future); Proceedings of Advances in Cryptology, EUROCRYPT '84, Springer-Verlag, (Berlin, 1985), pp. 159–165.Google Scholar
  6. [Takagi85]
    Takagi N. et al.: High-Speed VLSI Multiplication Algorithm with a Redundant Binary Addition Tree; IEEE Transactions on Computers, Vol C-34, No. 9, 1985.Google Scholar
  7. [Wallace64]
    Wallace C. S.: A suggestion for a fast multiplier; IEEE Transactions on Electronic Computers, Vol. EC-13, Feb. 1964, pp. 14–17.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • P. Lippitsch
    • 1
  • K. C. Posch
    • 1
  • R. Posch
    • 1
  1. 1.Department of Applied Information Processing and Communications TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations