Advertisement

Testing computational theories of motion discontinuities: A psychophysical study

  • Lucia M. Vaina
  • Norberto M. Grzywacz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 588)

Abstract

This study reports results from three patients with bilateral brain lesions (A.F., C.D., and O.S.) and normal observers on psychophysical tasks, which examined the contribution of motion mechanisms to the extraction of image discontinuities. The data do not support the suggestion that the visual system extracts motion discontinuities by comparing fully encoded velocity signals ([NL]; [Clo]). Moreover, the data do not support the suggestion that the computations underlying discontinuity localization must occur simultaneously with the spatial integration of motion signals ([Kea]). We propose a computational scheme that can account for the data.

Keywords

Motion Perception Speed Ratio Motion Coherence Motion Discontinuity Coherence Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Clo]
    Clocksin, W.F.: Perception of surface slant and edge labels from optical flow: A computational approach. Perception, 9 (1980) 253–269PubMedGoogle Scholar
  2. [GY]
    Grzywacz, N.M., Yuille, A.L.: A model for the estimate of local image velocity by cells in the visual cortex. Phil Trans. R. Soc. Lond. B, 239 (1990) 129–161Google Scholar
  3. [Hil]
    Hildreth, E.C.: The Measurement of Visual Motion. Cambridge, USA: MIT Press, (1984)Google Scholar
  4. [Kea]
    Koch, C., Wang, H.T., Mathur, B., Hsu, A., Suarez, H.: Computing optical flow in resistive networks and in the primate visual system. Proc. of the IEEE Workshop on Visual Motion, Irvine, CA, USA (1989) 62–72Google Scholar
  5. [NL]
    Nakayama, K., Loomis, J.M.: Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis. Perception, 3 (1974) 63–80PubMedGoogle Scholar
  6. [NP]
    Newsome, W.T., Paré, E.B.: A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8 (1988) 2201–2211PubMedGoogle Scholar
  7. [Vea1]
    Vaina, L.M., LeMay, M., Bienfang, D.C., Choi, A.Y., Nakayama, K.: Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms. Vis. Neurosci. 5 (1990) 353–371PubMedGoogle Scholar
  8. [Vea2]
    Vaina, L.M., Grzywacz, N.M., LeMay, M.: Structure from motion with impaired local-speed and global motion-field computations. Neural Computation, 2 (1990) 420–435Google Scholar
  9. [Vea3]
    Vaina, L.M., Grzywacz, N.M., LeMay, M.: Perception of motion discontinuities in patients with selective motion deficits. (Submitted for publication)Google Scholar
  10. [YG1]
    Yuille, A.L., Grzywacz, N.M.: A computational theory for the perception of coherent visual motion. Nature, 333 (1988) 71–74PubMedGoogle Scholar
  11. [YG2]
    Yuille, A.L., Grzywacz, N.M.: A mathematical analysis of the motion coherence theory. Intl. J. Comp. Vision, 3 (1989) 155–175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Lucia M. Vaina
    • 1
    • 2
  • Norberto M. Grzywacz
    • 3
  1. 1.Intelligent Systems Laboratory, College of Engineering and Department of NeurologyBoston UniversityBostonUSA
  2. 2.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyUSA
  3. 3.The Smith-Kettlewell Eye Research InstituteSan FranciscoUSA

Personalised recommendations