Advertisement

Application of connectionist models to fuzzy inference systems

  • C. Touzet
  • N. Giambiasi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 590)

Abstract

In this paper, we will try to shed light on the usefulness of neural networks by describing an application which combines connectionism and ruled-based systems. In the present fuzzy ruled production systems, propagation of uncertainty coefficients is carried out by means of computational formulae stemming from mathematical models of fuzzy reasoning. But the use of a formula provided by a general abstact model, and not intimately related to the application, can lead us to a fuzzy procedure not reflecting the fuzzy reasoning of the human expert. The connectionist approach proposed here solves this problem of fuzzy inference. An uncertainty propagation rule specific to the application domain is determined by learning from examples of fuzzy inferences.

Key words

Expert system Production rule Fuzzy inference Connectionism Backpropagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Amy, A. Giacometti & A. Gut, “Modèles connexionnistes de l'expertise,ℍ Neuro-Nimes 90, Nimes, France, EC2 Eds., pp 99–119, November 1990.Google Scholar
  2. [2]
    “DARPA Neural network Study,ℍ AFCEA International Press, 1988.Google Scholar
  3. [3]
    J. Dayhoff, “Neural Networks Architectures,ℍ Van Nostrand Reinhold, 1990.Google Scholar
  4. [4]
    N. Giambiasi, R. Lbath & C. Touzet, “Une approche connexionniste pour calculer l'implication floue dans les systèmes à base de règlesℍ, Neuro-NÎmes 89, NÎmes, France, EC2 Eds, November 1989.Google Scholar
  5. [5]
    P. Handcock, “Data representation in neural nets: an empirical study,ℍ Proc. of the 1988 Connectionist Models Summer School, D. Touretzky & al. Eds, Morgan Kaufmann Publishers, 1988.Google Scholar
  6. [6]
    D. O. Hebb, The Organization of Behaviour,ℍ New-York: Wiley, 1949.Google Scholar
  7. [7]
    R. Hecht-Nielsen, “Neurocomputing,ℍ Addison-Wesley, pp. 132, 1989.Google Scholar
  8. [8]
    K. Karna and D. Breen, “An artificial neural networks tutorial: part 1-Basics,ℍ The International Journal of Neural Networks Research and Applications, Vol. 1, No. 1, pp 4–23, January 1989.Google Scholar
  9. [9]
    A. Kaufmann, “Nouvelles logiques pour l'Intelligence Artificielleℍ, Ed. Hermès, 1987.Google Scholar
  10. [10]
    T. Kohonen, “An introduction to neural computingℍ, Neural Networks, Vol. 1, No. 1, pp 3–16, 1988.Google Scholar
  11. [11]
    Y. Le Cun, “Modèles connexionnistes de l'apprentissage,ℍ Thèse de Doctorat, Université Paris 6, July 1987.Google Scholar
  12. [12]
    W. S. McCulloch & W. Pitts, “A logical calculus of the ideas immanent in nervous activity,ℍ Bulletin of Mathematical Biophysics 5, pp 115–133, 1943.Google Scholar
  13. [13]
    M. L. Minsky & S.A. Papert, “Perceptrons,ℍ Expanded Edition, MIT Press, 1988.Google Scholar
  14. [14]
    C. Suttner & W. Ertel, “Using back-propagation for guiding the search of a theorem prover,ℍ The International Journal of Neural Networks Research and Applications, Vol. 2, No. 1, pp 3–16, March 1991.Google Scholar
  15. [15]
    E. Shortliffe, “Computer-Based Medical Consultations: MYCINℍ, American Elsevier, N.Y., 1976.Google Scholar
  16. [16]
    C. Touzet, SACREN: Système d'Aide au Choix d'un Réseau de Neurones, Rapport final du contrat ANVAR nℴ A8801006, juillet 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. Touzet
    • 1
  • N. Giambiasi
    • 1
  1. 1.LERI(Laboratoire d'Etude et Recherche en Informatique)NÎmesFRANCE

Personalised recommendations