Advertisement

A combinatorial bound for linear programming and related problems

  • Micha Sharir
  • Emo Welzl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 577)

Abstract

We present a simple randomized algorithm which solves linear programs with n constraints and d variables in expected O(d32 d n) time. The expectation is over the internal randomizations performed by the algorithm, and holds for any input.

The algorithm is presented in an abstract framework, which facilitates its application to a large class of problems, including computing smallest enclosing balls (or ellipsoids) of finite point sets in d-space, computing largest balls (ellipsoids) in convex polytopes, convex programming in general, etc.

Keywords

computational geometry combinatorial optimization linear programming randomized incremental algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Beh]
    F. Behrend, über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen Bereiches, Math. Ann. 115 (1938), 379–411.Google Scholar
  2. [Cla1]
    K. L. Clarkson, Linear Programming in \(O(n3^{d^2 } )\) time, Inform. Process. Lett. 22 (1986), 21–24.Google Scholar
  3. [Cla2]
    K. L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension is small, manuscript, 1989.Google Scholar
  4. [DLL]
    L. Danzer, D. Laugwitz and H. Lenz, über das Löwnersche Ellipsoid und sein Analogom unter den einem Eikörper eingeschriebenen Ellipsoiden, Arch. Math. 8 (1957), 214–219.Google Scholar
  5. [Dye1]
    M. E. Dyer, On a multidimensional search technique and its application to the Euclidean one-center problem, SIAM J. Comput 15 (1986), 725–738.Google Scholar
  6. [Dye2]
    M. E. Dyer, A class of convex programs with applications to computational geometry, manuscript (1991).Google Scholar
  7. [DyF]
    M. E. Dyer and A. M. Frieze, A randomized algorithm for fixed-dimensional linear programming, manuscript, 1987.Google Scholar
  8. [Juh]
    F. Juhnke, Löwner ellipsoids via semiinfinite optimization and (quasi-) convexity theory, Technische Universität Magdeburg, Sektion Mathematik, Report 4/90 (1990).Google Scholar
  9. [Jun]
    H. Jung, über die kleinste Kugel, die eine räumliche Figur einschließt, J. Reine Angew. Math. 123 (1901), 241–257.Google Scholar
  10. [Kal]
    G. Kalai, A subexponential randomized simplex algorithm, manuscript (1991).Google Scholar
  11. [MSW]
    J. Matoušek, M. Sharir and E. Welzl, A subexponential bound for linear programming, in preparation (1991).Google Scholar
  12. [Meg1]
    N. Megiddo, Linear-time algorithms for linear programming in ℝ3 and related problems, SIAM J. Comput 12 (1983) 759–776.Google Scholar
  13. [Meg2]
    N. Megiddo, Linear programming in linear time when the dimension is fixed, J. Assoc. Comput. Mach. 31 (1984), 114–127.Google Scholar
  14. [Pos]
    M. J. Post, Minimum spanning ellipsoids, in “Proc. 16th Annual ACM Symposium on Theory of Computing” (1984), 108–116.Google Scholar
  15. [Sei1]
    R. Seidel, Low dimensional Linear Programming and convex hulls made easy, Discrete Comput. Geom. 6 (1991), 423–434.Google Scholar
  16. [Sei2]
    R. Seidel, Backwards analysis of randomized geometric algorithms, manuscript (1991).Google Scholar
  17. [Syl]
    J. J. Sylvester, A question in the geometry of situation, Quart. J. Math. 1 (1857) 79–79.Google Scholar
  18. [Wel]
    E. Welzl, Smallest enclosing disks (balls and ellipsoids), in “New Results and New Trends in Computer Science”, (H. Maurer, Ed.), Lecture Notes in Computer Science (1991) to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Micha Sharir
    • 1
    • 2
  • Emo Welzl
    • 3
  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  3. 3.Institut für InformatikFreie Universität BerlinBerlin 33Germany

Personalised recommendations