Advertisement

Broadcasting in butterfly and debruijn networks

Extended abstract
  • R. Klasing
  • B. Monien
  • R. Peine
  • E. Stöhr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 577)

Abstract

Broadcasting is the process of message dissemination in a communication network in which a message originated by one processor is transmitted to all processors of the network. In this paper, we present a new lower bound of 1.7417m for broadcasting in the butterfly network of dimension m. This improves the best known lower bound of 1.5621m. We also describe an algorithm which improves the upper bound from 2m to 2m−1. This is shown to be optimal for small dimensions m. In addition, the presented lower bound technique is used to derive non-trivial lower bounds for broadcasting in the deBruijn network of dimension m. An upper bound of 1.5m + 1.5 is well-known for this network. Here, we are able to improve the lower bound from 1.1374m to 1.3171m.

Classification

Theory of parallel and distributed computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK89]
    S.B. Akers, B. Krishnamurthy, ”A group-theoretic model for symmetric interconnection networks”, IEEE Transactions on Computers, vol. 38, No. 4, pp. 555–566, 1989.Google Scholar
  2. [ABR90]
    F. Annexstein, M. Baumslag, A.L. Rosenberg, ”Group action graphs and parallel architectures”, SIAM J. Comput., vol. 19, no. 3, pp. 544–569, 1990.Google Scholar
  3. [BHLP88]
    J.-C. Bermond, P. Hell, A.L. Liestman, J.G. Peters, ”Broadcasting in bounded degree graphs”, Technical report, Simon Fraser University, 1988, to appear in SIAM Journal on Discrete Maths.Google Scholar
  4. [BP85]
    C.A. Brown, P.W. Purdom, The Analysis of Algorithms, Holt, Rinehart and Winston, New York, 1985, § 5.3.Google Scholar
  5. [BP88]
    J.-C. Bermond, C. Peyrat, ”Broadcasting in deBruijn networks”, Proc. 19th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium 66, pp. 283–292, 1988.Google Scholar
  6. [BP89]
    J.C. Bermond, C. Peyrat, ”De Bruijn and Kautz networks: a competitor for the hypercube?”, In F. Andre, J.P. Verjus, editors, Hypercube and Distributed Computers, pp. 279–294, North-Holland, 1989.Google Scholar
  7. [CGV89]
    R.M. Capocelli, L. Gargano, U. Vaccaro, ”Time Bounds for Broadcasting in Bounded Degree Graphs”, 15th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG 89), LNCS 411, pp. 19–33, 1989.Google Scholar
  8. [DB46]
    N.G. De Bruijn, ”A combinatorial problem”, Koninklijke Nederlandsche Akademie van Wetenschappen Proc., vol. 49, pp. 758–764, 1946.Google Scholar
  9. [FL91]
    P. Fraigniaud, E. Lazard, ”Methods and problems of communication in usual networks”, manuscript, 1991.Google Scholar
  10. [HHL88]
    S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman, ”A survey of gossiping and broadcasting in communication networks”, Networks, vol. 18, pp. 319–349, 1988.Google Scholar
  11. [HJM90]
    J. Hromkovic, C.D. Jeschke, B. Monien, ”Optimal algorithms for dissemination of information in some interconnection networks”, Proc. MFCS 90, LNCS 452, pp. 337–346, 1990.Google Scholar
  12. [HOS91]
    M.C. Heydemann, J. Opatrny, D. Sotteau, ”Broadcasting and spanning trees in de Bruijn and Kautz networks”, 1991, to appear in Discrete Applied Mathematics, special issue on Interconnection Networks. Google Scholar
  13. [KLM90]
    R. Klasing, R. Lüling, B. Monien, ”Compressing cube-connected cycles and butterfly networks”, Proc. 2nd IEEE Symposium on Parallel and Distributed Processing, pp. 858–865, 1990.Google Scholar
  14. [LP88]
    A.L. Liestman, J.G. Peters, ”Broadcast networks of bounded degree”, SIAM Journal on Discrete Maths, vol. 1, no. 4, pp. 531–540, 1988.Google Scholar
  15. [MS90]
    B. Monien, I.H. Sudborough, ”Embedding one Interconnection Network in Another”, Computing Suppl. 7, pp. 257–282, 1990.Google Scholar
  16. [P68]
    M.G. Pease, ”An adaption of the Fast Fourier transform for parallel processing”, Journal ACM, vol 15, pp. 252–264, April 1968.Google Scholar
  17. [SP89]
    M.R. Samatham, D.K. Pradhan, ”The de Bruijn multiprocessor network: a versatile parallel procesing and sorting network for VLSI”, IEEE Transactions on Computers, vol. 38, no. 4, pp. 567–581, 1989.Google Scholar
  18. [St91a]
    E.A. Stöhr, ”Broadcasting in the butterfly network”, IPL 39, pp. 41–43, 1991.Google Scholar
  19. [St91b]
    E.A. Stöhr, ”On the broadcast time of the butterfly network”, Proc. 17th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG 91), 1991, to be published in LNCS.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. Klasing
    • 1
  • B. Monien
    • 1
  • R. Peine
    • 1
  • E. Stöhr
    • 2
  1. 1.Universität-GH PaderbornPaderbornGermany
  2. 2.Karl-Weierstraß-Institut für MathematikBerlinGermany

Personalised recommendations