Separating counting communication complexity classes

  • Carsten Damm
  • Matthias Krause
  • Christoph Meinel
  • Stephan Waack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 577)


We develope new lower bound arguments on communication complexity and establish a number of separation results for Counting Communication Classes. In particular, it will be shown that for Communieation Complexity MOD p -P and MOD q -P are uncomparable via inclusion for all pairs of distinct primes p, q. Further we prove that the same is true for PP and MOD p -P for any prime number p. Our results are due to mathematical characterization of modular and probabilistic communication complexity by the minimum rank of matrices belonging to certain equivalence classes. We use arguments from algebra and analytic geometry.


complexity of Boolean function communication complexity and distributed computing probabilism lower bound arguments separation of complexity classes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AUY 83]
    A.V.Aho, J.D.Ullman, M.Yannakakis, On Notions of Information Transfer in VLSI Circuits, Proc. 15-th ACM STOC, 133–139, 1983.Google Scholar
  2. [AM 86]
    N.Alon, W.Maass, Meanders, Ramsey Theory, and Lower Bounds for Branching Programs, Proc. 27th IEEE FOCS, 30–39, 1986.Google Scholar
  3. [BFS 86]
    L.Babai, P.Frankl, J.Simon, Complexity Classes in Communication Complexity Theory, Proc. 27-th IEEE FOCS, 337–347, 1986.Google Scholar
  4. [BNS 89]
    L.Babai, N.Nisan, M.Szegedy, Multiparty Protocols and Logspace-hard Pseudorandom Sequences, Proc. 21-th ACM STOC, 1–11, 1989.Google Scholar
  5. [HR88]
    B.Halstenberg, R.Reischuk, Relations between Communication Complexity Classes, Proc. 3-th IEEE Structure in Complexity Theory Conference, 19–28, 1988.Google Scholar
  6. [H 90]
    B.Halstenberg, The Polynomial Communication Hierarchy and Protocols with Moderately Bounded Error, Technical Report TI 1/90 of TH Darmstadt, 1990.Google Scholar
  7. [K 90]
    M.Krause, Separating ⊕L from L, NL, co-NL, and AL=P for Oblivious Turing Machines of Linear Access Time, Proc. 15-th Symp. MFCS, 385–392, 1990.Google Scholar
  8. [K 91]
    M.Krause, Geometric Arguments yield better Bounds for Threshold Circuits and Distributed Computing, Proc. 6-th IEEE Structure in Complexity Conference, 314–321, 1991.Google Scholar
  9. [KMW 89]
    M.Krause, Ch.Meinel, S.Waack, Separating Complexity Classes related to certain Input-Oblivious, Logarithmic Space Bounded Turing Machines, Proc. 4-th IEEE Structure in Complexity Theory Conference, 1989.Google Scholar
  10. [KW 89]
    M.Krause, S.Waack, On oblivious Branching Programs of Linear Length, Proc. 7-th Conference FCT, LNCS 380, 287–297, 1989.Google Scholar
  11. [KW 91]
    M.Krause, S.Waack, Variation ranks of Communication Matrices and Lower Bounds for Depth Two Circuits having Symmetric Gales with unbounded Fan-in, Proc. of 32-th IEEE FOCS, 1991, 777–782.Google Scholar
  12. [MS 82]
    K.Mehlhorn, E.M.Schmidt, Las vegas is Better than Determinism in VLSI and Distributed Computing, Proc.14-th ACM STOC, 330–337, 1982.Google Scholar
  13. [PS 84]
    R.Paturi, J.Simon, Probabilistic Communication Complexity, Proc. 25-th IEEE FOCS, 118–126, 1984.Google Scholar
  14. [R 86]
    A.A.Razborov, Lower Bounds for the Size of Circuits of bounded Depth with Basis +,∧, Math. Zametki 41(4), 1987, 598–607 in Russian, Engl.transl. in Mathematical Notes 41(4) 1987, 333–338.Google Scholar
  15. [RW 90]
    R.Raz,A.Widgerson, Monotone Circuits for Matching require linear Depth, Proc. 20-th ACM STOC, 287–292, 1990.Google Scholar
  16. [S 87]
    R.Smolensky, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity, Proc. 19th ACM STOC, 77–82, 1987.Google Scholar
  17. [S 90]
    R.Smolensky, On Interpolation by Analytic Functions with special Properties and some weak Lower Bounds on the Size of Circuits with Symmetric Gates, Proc. 31-th IEEE FOCS, 628–631, 1990.Google Scholar
  18. [VV 86]
    L.G.Valiant, V.V.Vazirani, NP is as easy as detecting unique solutions, Theoretical Computer Science 47 (1986), 85–93, North Holland.Google Scholar
  19. [Y 83]
    A.C.C.Yao, Lower Bounds by Probabilistic Arguments, Proc. 27th IEEE FOCS, 420–428, 1983.Google Scholar
  20. [Y 90]
    A.C.C.Yao, On ACC and Threshold Circuits, Proc. 31-th IEEE FOCS, 619–627, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Carsten Damm
    • 1
  • Matthias Krause
    • 2
  • Christoph Meinel
    • 3
  • Stephan Waack
    • 4
  1. 1.Fachbereich InformatikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Lehrstuhl Informatik IIUniversität DortmundDortmund 50Germany
  3. 3.Fachbereich InformatikHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Karl-Weierstraß-Institut für MathematikBerlinGermany

Personalised recommendations