Generating BDDs for symbolic model checking in CCS

  • Reinhard Enders
  • Thomas Filkorn
  • Dirk Taubner
Session 7: Symbolic Model Checking
Part of the Lecture Notes in Computer Science book series (LNCS, volume 575)


Finite transition systems can easily be represented by binary decision diagrams (BDDs) through the characteristic function of the transition relation. Burch et al. have shown how model checking of a powerful version of the Μ-calculus can be performed on such BDDs.

In this paper we show how a BDD can be generated from elementary finite transition systems given as BDDs by applying the CCS operations of parallel composition, restriction, and relabelling. The resulting BDDs only grow linearly in the number of parallel components. This way bisimilarity checking can be performed for processes out of the reach of conventional process algebra tools.


  1. [1]
    R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, C-35(8):677–691, 1986.Google Scholar
  2. [2]
    J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. In Proceedings of the 5th IEEE Symposium on Logic in Computer Science, Philadelphia, pages 428–439, 1990.Google Scholar
  3. [3]
    R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems. Proceedings, Grenoble, 1989, volume 407 of Lecture Notes in Computer Science, pages 24–37, Berlin et al., 1990. Springer.Google Scholar
  4. [4]
    R. de Simone and D. Vergamini. Abord auto. Rapports Techniques 111, INRIA, Sophia Antipolis, 1989.Google Scholar
  5. [5]
    E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mucalculus. In Proc. of the First Annual Symp. on Logic in Computer Science, pages 267–278. Computer Society Press, 1986.Google Scholar
  6. [6]
    K. Estenfeld, H.-A. Schneider, D. Taubner, and E. Tidén. Computer aided verification of parallel processes. In A. Pfitzmann and E. Raubold, editors, VIS '91 VerläΒliche Informationssysteme. Proceedings, Darmstadt 1991, volume 271 of Informatik Fachberichte, pages 208–226, Berlin, 1991. Springer.Google Scholar
  7. [7]
    J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence. Science of Computer Programming, 13:219–236, 1989/90.Google Scholar
  8. [8]
    T. Filkorn. Unifikation in endlichen Algebren und ihre Integration in Prolog, Master's Thesis, Techn. Universität München, 1988.Google Scholar
  9. [9]
    J. F. Groote and F. Vaandrager. An efficient algorithm for branching bisimulation and stuttering equivalence. In ICALP '90, Lecture Notes in Computer Science, Berlin, 1990. Springer.Google Scholar
  10. [10]
    R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.Google Scholar
  11. [11]
    C. Stirling and D. Walker. Local model checking in the modal mu-calculus. In J. Däaz and F. Orejas, editors, TAPSOFT '89. Volume 1., Proceedings, Barcelona 1989, volume 351 of Lecture Notes in Computer Science, pages 369–383, Berlin, 1989. Springer.Google Scholar
  12. [12]
    D. Taubner. Finite Representations of CCS and TCSP Programs by Automata and Petri Nets, volume 369 of Lecture Notes in Computer Science. Springer, Berlin, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Reinhard Enders
    • 1
  • Thomas Filkorn
    • 1
  • Dirk Taubner
    • 1
  1. 1.Siemens AG, Corporate Research and Development (ZFE IS INF2)München 83F.R. Germany

Personalised recommendations