Advertisement

Computing the shortest path tree in a weak visibility polygon

  • Subir Kumar Ghosh
  • Anil Maheshwari
  • Sudebkumar Prasant Pal
  • Sanjeev Saluja
  • C. E. Veni Madhavan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 560)

Abstract

In this paper we propose two linear time algorithms for computing the shortest path tree rooted at any vertex of a weak visibility polygon. The first algorithm computes the shortest path tree in a polygon weakly visible from a given internal segment. The second algorithm computes the shortest path tree in a weak visibility polygon without the knowledge of a visibility segment. In both algorithms we use the convexity property of shortest paths in weak visibility polygons established in [4,11].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Avis and G. T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge, IEEE Trans. Comput., 30, pp. 393–410, 1981.Google Scholar
  2. [2]
    B. Chazelle, Triangulating a simple polygon in linear time, Technical Report No. CS-TR-264–90, Department of Computer Science, Princeton University, May 1990.Google Scholar
  3. [3]
    S. K. Ghosh, Computing the visibility polygon from a convex set and related problems, Journal of Algorithms, 12, pp. 75–95, 1991.CrossRefGoogle Scholar
  4. [4]
    S. K. Ghosh, A. Maheshwari, S. P. Pal, S. Saluja, C. E. Veni Madhavan, Characterizing weak visibility polygons and related problems, Technical Report IISc-CSA-90-1, Department of Computer Science and Automation, Indian Institute of Science, Bangalore, January 1990 (Presented at the Second Canadian Conference on Computational Geometry, lOttawa, Ontario, Canada, August 1990).Google Scholar
  5. [5]
    L. Guibas, J. Hershberger, D. Leven, M. Sharir and R. Tarjan, Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica, 2, pp. 209–233, 1987.CrossRefGoogle Scholar
  6. [6]
    L. Guibas, E. McCreight, M. Plass and J. Roberts, A new representation for linear lists, Proceedings of the 9th ACM Symposium on Theory of Computing, pp. 49–60, 1977.Google Scholar
  7. [7]
    J. Hershberger, Ph. D. Thesis, Stanford University.Google Scholar
  8. [8]
    S. Huddleston and K. Mehlhorn, A new data structure for representing sorted lists, Acta Informatica, 17, pp. 157–184, 1982.CrossRefGoogle Scholar
  9. [9]
    D. Kirkpatrick, M. M. Klawe and R. E. Tarjan, Polygon triangulation in O(nloglogn) time with simple data structures, Proc. of the Sixth Annual ACM Symposium on Computational Geometry, 1990.Google Scholar
  10. [10]
    D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers, Networks, 14, pp. 393–410, 1984.Google Scholar
  11. [11]
    S. P. Pal, Weak visibility and related problems on simple polygons, Ph. D. Thesis, Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India, October 1990.Google Scholar
  12. [12]
    S. Suri, A linear time algorithm for the minimun link paths inside a simple polygon, Computer Vision, Graphics and Image Processing, 35, pp. 99–110, 1986.Google Scholar
  13. [13]
    R. E. Tarjan and C. Van Wyk, An O(nloglogn)-time algorithm for triangulating a simple polygon, SIAM J. Computing, 17, pp. 143–178, 1988.CrossRefGoogle Scholar
  14. [14]
    G. T. Toussaint, Shortest path solves edge-to-edge visibility in a polygon, Pattern Recognition Letters, 4, pp. 165–170, 1986.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Subir Kumar Ghosh
    • 1
  • Anil Maheshwari
    • 2
  • Sudebkumar Prasant Pal
    • 3
  • Sanjeev Saluja
    • 4
  • C. E. Veni Madhavan
    • 5
  1. 1.Computer Science GroupTata Institute of Fundamental ResearchBombayIndia
  2. 2.Computer Systems and Communications GroupTata Institute of Fundamental ResearchBombayIndia
  3. 3.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia
  4. 4.Computer Science GroupTata Institute of Fundamental ResearchBombayIndia
  5. 5.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations