Small Groups
Part of the Lecture Notes in Computer Science book series (LNCS, volume 559)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Remarks

  1. ASCIONE, J.A., HAVAS, G., and LEEDHAM-GREEN, C.R. (1977): A computer-aided classification of certain groups of prime power order, Bull. Aust. Math. Soc., 17, pp. 257–274, 317–320, microfiche supplement.Google Scholar
  2. ATKINSON, M.D. (ed.) (1984): Computational Group Theory (Proc. LMS Symp. on Computational Group Theory, Durham, July 30–August 9, 1982), Academic Press, London.Google Scholar
  3. BABAI, L. (1979): Monte Carlo algorithms in graph isomorphism testing, manuscript.Google Scholar
  4. BABAI, L., KANTOR, W., and LUKS, E. (1983): Computational complexity and the classification of finite simple groups, Proc. 24th IEEE Foundations of Computer Science, pp.162–171.Google Scholar
  5. BABAI, L., and SZEMEREDI, R. (1984): On the complexity of matrix group problems I, Proc. 25th IEEE Foundations of Computer Science, pp.229–240.Google Scholar
  6. BROWN, H., BÜLOW, R., NEUBÜSER, J., WONDRATSCHEK, H., and ZASSENHAUS, H. (1978): Crystallographic Groups of Four-Dimensional Space, Wiley, New York.Google Scholar
  7. BUCHBERGER, B., COLLINS, G.E., and LOOS, R. (1982): Computer Algebra: Symbolic and Algebraic Computation, Springer-Verlag, Wien.Google Scholar
  8. BUTLER, G. (1986): Divide-and-conquer in computational group theory, SYMSAC '86 (Proceedings of the 1986 ACM Symposium on Symbolic and Algebraic Computation, Waterloo, July 21–23, 1986), ACM, New York, pp.59–64.Google Scholar
  9. CANNON, J.J. (1969): Computers in group theory: A survey, Commun. ACM, 12, pp.3–12.Google Scholar
  10. CANNON, J.J. (1984): An introduction to the group theory language, Cayley, in, pp. 145–183.Google Scholar
  11. CANNON, J.J., and RICHARDSON, J.S. (1984/5): Cayley — Teaching group theory by computer, SIGSAM Bull., 18/19, pp. 15–18.Google Scholar
  12. EVEN, S., and GOLDREICH, O. (1981): The minimum-length generator sequence problem is NP-hard, J. Algorithms, 2, pp.311–313.Google Scholar
  13. FELSCH, V. (1978): A bibliography on the use of computers in group theory and related topics: algorithms, implementations, and applications, SIGSAM Bull., 12, pp.23–86.Google Scholar
  14. FURST, M., HOPCROFT, J.E., and LUKS, E. (1980): Polynomial-time algorithms for permutation groups, Proc. 21st IEEE Foundations of Computer Science, pp.36–41.Google Scholar
  15. GORENSTEIN, D. (1985): The enormous theorem, Scientific American 253, 6, pp.92–103.Google Scholar
  16. HALL, Jr, M. (1959): The Theory of Groups, Macmillan, New York.Google Scholar
  17. HAVAS, G., and KOVACS, L.G. (1984): Distinguishing eleven crossing knots, in pp.367–373.Google Scholar
  18. HOFFMAN, C.M. (1982): Group Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Science, 136, Springer-Verlag, Berlin.Google Scholar
  19. KOCAY, W.L. (1984): Abstract data types and graph isomorphism, J. Combinatorics, Information, and Systems Science, 9, pp.247–259.Google Scholar
  20. LADE, R., NEUBÜSER, J., and SCHOENWAELDER, U. (1984): Algorithms for finite soluble groups and the SOGOS system, in pp. 105–135.Google Scholar
  21. LEON, J.S. (1979): An algorithm for computing the automorphism group of a Hadamard matrix, J. Comb. Theory (A), 27, pp.289–306.Google Scholar
  22. LEON, J.S. (1982): Computing automorphism groups of error correcting codes, IEEE Trans. Infor. Theory, IT-28, pp.496–511.Google Scholar
  23. LEON, J.S. (1984a): Computing automorphism groups of combinatorial objects, in, pp.321–335.Google Scholar
  24. LEON, J.S. (1984b): CAMAC2: A portable system for combinatorial and algebraic computation, EUROSAM '84 (Proc. Internat. Symp. Symbolic and Algebraic Computation, Cambridge, July 9–11, 1984), J. Fitch (ed.), Lecture Notes in Computer Science, 174, Springer-Verlag, Berlin, pp.213–224.Google Scholar
  25. LEON, J.S., and SIMS, C.C. (1977): The existence and uniqueness of a simple group generated by (3,4)-transpositions, Bull. Amer. Math. Soc., 83, pp. 1039–1040.Google Scholar
  26. LUKS, E. (1980): Isomorphism of graphs of bounded valence can be tested in polynomial time, Proc. 21 st IEEE Foundations of Computer Science, pp.42–49.Google Scholar
  27. MAGLIVERAS, S.S., and LEAVITT, D.W. (1984): Simple 6-(33,8,36) designs from PΛL 2(32), in, pp.337–352.Google Scholar
  28. MAGLIVERAS, S.S., OBERG, B.A., and SURKAN, A.J. (1987): A new random number generator from permutation groups, Rend. Sem. Mat. Fis. Milano, 54, pp. 203–223.Google Scholar
  29. MAGNUS, W., KARRASS, A., and SOLTTAR, D. (1966): Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Wiley Interscience, New York.Google Scholar
  30. MCKAY, B.D. (1981): Practical graph isomorphism, (Proc. Tenth Manitoba Conf. on Numerical Math. and Computing, Winnipeg, vol. 1), Congr. Numer., 30, pp. 45–87.Google Scholar
  31. NEUBÜSER, J. (1982): An elementary introduction to coset table methods in computational group theory, Groups — St Andrews 1981 (Proc. internat. conf., St Andrews, July 25–August 8, 1981), London Mathematical Society Lecture Note Series, 71, C.M. Campbell and E.F. Robertson (eds), Cambridge University Press, Cambridge, pp. 1–45.Google Scholar
  32. NEUBÜSER, J., PAHLINGS, H., and PLESKEN, W. (1984): CAS; Design and use of a system for the handling of characters of smite groups, in, pp. 195–247.Google Scholar
  33. NORTON, S.P. (1980): The construction of J 4, Proc. Symp. Pure Math., 37, pp.271–277.Google Scholar
  34. WIELANDT, H. (1964): Finite Permutation Groups, Academic Press, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Personalised recommendations