Advertisement

A faster algorithm for edge-disjoint paths in planar graphs

  • Michael Kaufmann
  • Gerhard Klär
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 557)

Abstract

An efficient algorithm for the edge-disjoint paths problem in planar graphs is presented. Using Frederickson's [F84] decomposition method for planar graphs we improve the best bound for the running time of O(n2) [BM86, MNS86] for the edgedisjoint paths problem to O(n5/3(log log n)1/3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BM86]
    M. Becker, K. Mehlhorn: “Algorithms for Routing in Planar Graphs”, Acta Informatica 23 (1986), pp. 163–176.Google Scholar
  2. [EIS76]
    S.Even, Altai, A.Shamir: “On the complexity of timetable and multicommodity flow problems”, SIAM J. Comp. 5(4) (1976), pp. 691–703.Google Scholar
  3. [EKZ77]
    P. Van Emde Boas, R. Kaas, and E. Zijlstra: “Design and implementation of an efficient priority queue”, Math. Sys. Theory 10 (1977), pp. 99–127.Google Scholar
  4. [F82]
    A. Frank: “Disjoint Paths in Rectilinear Grids”, Combinatorica 2, 4 (1982), pp. 361–371.Google Scholar
  5. [F84]
    G. N. Frederickson: “Fast Algorithms For Shortest Paths In Planar Graphs, With Applications”, Technical report (1984), Purdue University, Indiana.Google Scholar
  6. [FF56]
    L.R. Ford, D.R. Fulkerson: “Maximal flow through a network”, Canadian Journal of Mathematics, Vol. 8, pp. 399–404 (1956).Google Scholar
  7. [K90]
    M.Kaufmann: “A linear-time algorithm for routing in a convex grid”, IEEE Trans. on Computer-Aided Design 2 (1990), pp. 180–184.Google Scholar
  8. [KM86]
    M. Kaufmann, K. Mehlhorn: “Routing through a Generalized Switchbox”, J. Algorithms 7, pp. 510–531 (1986).Google Scholar
  9. [MNS86]
    K. Matsumoto, T. Nishizeki, N. Saito: “An Efficient Algorithm for Finding Multicommodity Flows in Planar Networks”, SIAM Journal of Computing, Vol 15:2 (1986), pp. 495–510.Google Scholar
  10. [MPS86]
    K. Mehlhorn, F.P. Preparata, M. Sarrafzadeh: “Channel routing in knockknee mode: Simplified algorithms and proofs”, Algorithmica 1 (1986), pp. 213–221.Google Scholar
  11. [NSS85]
    T. Nishizeki, N. Saito, K. Suzuki: “A linear-time routing algorithm for convex grids”, IEEE Trans. on Computer Aided Design, CAD-4 (1985), pp. 68–76.Google Scholar
  12. [O83]
    H. Okamura: “Multicommodity Flows in Graphs”, Discrete Applied Mathematics 6 (1983), pp. 55–62.Google Scholar
  13. [OS81]
    H. Okamura, P.D. Seymour: “Multicommodity Flows in Planar Graphs”, Journal of Combinatorial Theory 31, Series B (1981), pp. 75–81.Google Scholar
  14. [S87]
    A. Schrijver: “Decomposition of graphs on surfaces and a homotopic circulation theorem”, tech. report (1987), to appear in J. Comb. Theory, Ser. B.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Michael Kaufmann
    • 1
  • Gerhard Klär
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations