Mixed-searching and proper-path-width

  • Atsushi Takahashi
  • Shuichi Ueno
  • Yoji Kajitani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 557)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8(2), pp. 277–284, April 1987.Google Scholar
  2. [2]
    D. Bienstock and P. Seymour, Monotonicity in graph searching; Journal of Algorithms, 12(2), pp. 239–245, 1991.Google Scholar
  3. [3]
    H. L. Bodlaender and T. Kloks, Better algorithm for the pathwidth and treewidth of graphs, 1991, manuscript.Google Scholar
  4. [4]
    R. L. Breisch, An intuitive approach to speleotopology, Southwestern Cavers (published by the Southwestern Region of the National Speleological Society), 6(5), pp. 72–78, 1967.Google Scholar
  5. [5]
    D. S. Johnson, The NP-completeness column: an ongoing guide, Journal of Algorithms, 8, pp. 285–303, 1987.Google Scholar
  6. [6]
    L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Discrete Mathematics, 55, pp. 181–184, 1985.Google Scholar
  7. [7]
    L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoretical Computer Science, 47, pp. 205–218, 1986.Google Scholar
  8. [8]
    A. LaPaugh, Recontamination does not help to search a graph, Technical Report, Electrical Engineering and Computer Science Department, Princeton University, 1983.Google Scholar
  9. [9]
    M. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The complexity of searching a graph, Journal of the Association for Computing Machinery, 35(1), pp. 18–44, January 1988.Google Scholar
  10. [10]
    R. H. Möhring, Graph problems related to gate matrix layout and PLA folding, in G. Tinhofer, E. Mayr, H. Noltemeier, and M. Syslo, editors, Computational Graph Theory, pp. 17–51, Springer-Verlag, Wien New York, 1990.Google Scholar
  11. [11]
    T. D. Parsons, Pursuit-evasion in a graph, in Y. Alavi and D. Lick, editors, Theory and Applications of Graphs, pp. 426–441, Springer-Verlag, Berlin, 1976.Google Scholar
  12. [12]
    N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, Journal of Combinatorial Theory, Series B(35), pp. 39–61, 1983.Google Scholar
  13. [13]
    N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, 1986, preprint.Google Scholar
  14. [14]
    N. Robertson and P. D. Seymour, Graph minors. XVI. Wagner's conjecture, 1987, preprint.Google Scholar
  15. [15]
    P. Scheffler, A linear algorithm for the pathwidth of trees, in R. Bodendiek and R. Henn, editors, Topics in Combinatorics and Graph Theory, pp. 613–620, Physica-Verlag, Heidelberg, 1990.Google Scholar
  16. [16]
    S. Shinoda, On some problems of graphs — including Kajitani's conjecture and its solution —, in Proc. of 2nd Karuizawa Workshop on Circuits and Systems, pp. 414–418, 1989, in Japanese.Google Scholar
  17. [17]
    A. Takahashi, S. Ueno, and Y. Kajitani, Minimal acyclic forbidden minors for the family of graphs with bounded path-width, to appear in Annals of discrete mathematics (Proceedings of 2nd Japan conference on graph theory and combinatorics, 1990). Also: SIGAL 91-19-3, IPSJ, 1991.Google Scholar
  18. [18]
    A. Takahashi, S. Ueno, and Y. Kajitani, Mixed-searching and proper-path-width, Technical Report SIGAL 91-22-7, IPSJ, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Atsushi Takahashi
    • 1
  • Shuichi Ueno
    • 1
  • Yoji Kajitani
    • 1
  1. 1.Department of Electrical and Electronic EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations