Advertisement

A model-oriented method for algebraic specifications using COLD-1 as notation

  • Reinder J. Bril
Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 551)

Abstract

A model-oriented method for algebraic specifications is described, using the design language COLD-1 as notation. The method is based upon standard algebraic concepts, such as equivalence relations, congruence relations and homomorphisms. The method makes a clear distinction between the abstract type being defined and the model used as representation. The advantage of this approach is that the problem of implementation bias does not apply and that the operations of the model do not need to satisfy a property usually termed representation invariant. As such, the method deviates in an essential way from model-oriented methods like VDM and Z. Conceivable tool support for the method is briefly sketched.

Keywords

Model-oriented methods algebraic specifications wide-spectrum languages method support 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bergstra and L. Feijs, editors. Algebraic Methods II: Theory, Tools and Applications. Springer-Verlag, 1991. LNCS 490.Google Scholar
  2. [2]
    J. Bergstra, J. Heering, and P. Klint. Module Algebra. J. ACM, 37(2):335–372, Apr. 1990.Google Scholar
  3. [3]
    M. Broy and M. Wirsing. Partial abstract types. Acta Informatica, 18(1):47–64, 1982. Springer-Verlag, Berlin Heidelberg New York.Google Scholar
  4. [4]
    L. Feijs, H. Jonkers, C. Koymans, and G. Renardel de Lavalette. Formal Definition of the Design Language COLD-K. Technical Report METEOR/t7/PRLE/7, Philips Research Laboratories (PRLE), P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands, Apr. 1987. ESPRIT project 432.Google Scholar
  5. [5]
    G. Grätzer. Universal Algebra. D. van Nostrand Company, Inc., 1968.Google Scholar
  6. [6]
    J. Guttag. Abstract Data Types and the Development of Data Structures. Commun. ACM, 20(6):396–404, June 1977.Google Scholar
  7. [7]
    D. Harel. Handbook of Philosophical Logic, volume II, chapter Dynamic Logic, pages 497–604. D. Reidel Publishing Company, 1984. ISBN 90-277-1604-8.Google Scholar
  8. [8]
    C. Hoare. Proof of Correctness of Data Representation. Acta Informatica, 1(4):271–281, 1972.Google Scholar
  9. [9]
    I. V. Horebeek and J. Lewi. Algebraic Specifications in Software Engineering, An Introduction. Springer-Verlag, Berlin Heidelberg New York, 1989. ISBN 3-540-51626-3.Google Scholar
  10. [10]
    C. B. Jones. Systematic Software Development Using VDM. Series in Computer Science. Prentice-Hall International, 1986. ISBN 0-13-880725-6.Google Scholar
  11. [11]
    H. Jonkers. A Concrete Syntax for COLD-K. Technical Report METEOR/t8/PRLE/2, Philips Research Laboratories (PRLE), P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands, 1988. ESPRIT project 432.Google Scholar
  12. [12]
    B. Meyer. Object-oriented Software Construction. Series in Computer Science. Prentice-Hall International, 1988. ISBN 0-13-629049-3.Google Scholar
  13. [13]
    Philips Research, Information and Software Technology (IST), Bldg. WAY-1.21, P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands. Description of COLD-1, May 1991. 12 NC: 4322 270 55341.Google Scholar
  14. [14]
    Philips Research, Information and Software Technology (IST), Bldg. WAY-1.21, P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands. Igloo User's Manual, May 1991. 12 NC: 4322 270 55321.Google Scholar
  15. [15]
    Philips Research, Information and Software Technology (IST), Bldg. WAY-1.21, P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands. User's Manual ICE 0.4, July 1991. 12 NC: 4322 270 55721.Google Scholar
  16. [16]
    D. Scott. Bertrand Russell, Philosopher of the Century, chapter Existence and Description in Formal Logic, pages 181–200. Allen & Unwin, London, 1967.Google Scholar
  17. [17]
    J. Spivey. Understanding Z, a specification language and its formal semantics. Cambridge Tracts in Theoretical Computer Science 3, 1988. ISBN 0-521-33429-2.Google Scholar
  18. [18]
    J. Wing. A Specifier's Introduction to Formal Methods. IEEE Computer, 23(9):8–24, Sept. 1990.Google Scholar
  19. [19]
    M. Wirsing. Structured Algebraic Specifications: a Kernel Language. Master's thesis, Technische Universität München, 1983.Google Scholar
  20. [20]
    M. Wirsing and M. Broy. Theoretical Foundations of Programming Methodology, volume 91 of CMathematical and Physical Sciences, chapter An Analysis of Semantic Models for Algebraic Specifications, pages 351–413. D. Reidel Publishing Company, P.O.Box 17, 3300 AA Dordrecht, Holland, 1982. Lecture Notes of an International Summer School, directed by F.L. Bauer, E.W. Dijkstra and C.A.R. Hoare, ISBN 90-277-1460-6.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Reinder J. Bril
    • 1
  1. 1.Philips Research Laboratories Eindhoven (PRLE)JA EindhovenThe Netherlands

Personalised recommendations