Advertisement

Learning with CASTLE

  • S. Acid
  • L. M. de Campos
  • A. González
  • R. Molina
  • N. Pérez de la Blanca
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 548)

Abstract

We will describe here the learning algorithms we have implemented in CASTLE, (Causal Structures From Inductive Learning), to learn about causal structures from examples. A brief introduction to the software ifself and a description of what we intend to develop and implement in CASTLE are also given. Finally, the use of CASTLE is illustrated on a simple example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Acid, S., Campos,L.M.de, González, A., Molina, R. and Pérez de la Blanca, N. (1991) CASTLE: Causal Structures from Inductive Learning. Release 1.0. Technical Report no 91-4-1. Dept of Computer Science and A.I. (DECSAI). University of Granada.Google Scholar
  2. [2]
    Aho, A.V., Hopcroft, J.E. and Ullman, J.E. (1987) Data Structures and Algorithms. Addison-Wesley.Google Scholar
  3. [3]
    Molina, R. and Ripley, B.D. (1989). Using spatial models as priors in image analysis. J. Appl. Statist, 16, 193–206.Google Scholar
  4. [4]
    Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan and Kaufmann.Google Scholar
  5. [5]
    Pearl, J. and Verma, T.S. (1990) A Formal Theory of Inductive Causation. Technical Report R-155 Department of Computer Science. University of California.Google Scholar
  6. [6]
    Rajski, C. (1964) On the normed information rate of discrete random variables. Trasl of the Third Praga Congress, 583–585.Google Scholar
  7. [7]
    Ripley, B.D. (1988) Statistical Inference for Spatial Processes. Cambridge Univ. Press.Google Scholar
  8. [8]
    Spiegelhalter, D. J. (1986) Probabilistic reasoning in predictive expert systems. In Uncertainty in Artificial Intelligence (eds L.K. Kanal and J. Lemmer) 48–68. Amsterdam: North-HollandGoogle Scholar
  9. [9]
    Spiegelhalter, D. J. and Lauritzen, S.L. (1990) Sequential Updating of Conditional Probabilities on Directed Graphical Structures. Networks, 20, 579–605.Google Scholar
  10. [10]
    Statlog (1990). Technical Annex of ESPRIT project: Comparative Testing of Statistical and Logical Learning, Statlog.Google Scholar
  11. [11]
    Verma, T.S. and Pearl, J. (1990) Equivalence and Synthesis of Causal Models In Proc, Sixth Conference on Uncertainty in Artificial Intelligence. Cambridge Mass, 220–227.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • S. Acid
    • 1
  • L. M. de Campos
    • 1
  • A. González
    • 1
  • R. Molina
    • 1
  • N. Pérez de la Blanca
    • 1
  1. 1.Departamento de Ciencias de la Computación e I.A.Universidad de GranadaGranadaSpain

Personalised recommendations