Graded default logics

  • Christine Froidevaux
  • Philippe Chatalic
  • Jérôme Mengin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 548)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Besnard P. (1989), An introduction to default logic. Springer Verlag, Heidelberg.Google Scholar
  2. [2]
    Besnard P. Quiniou R, & Quinton P., (1983), A theorem prover for a decidable subset of first order logic, Proc. of AAAI-83, Washington D.C., 27–30.Google Scholar
  3. [3]
    Birkhoff G. (1973), Lattice Theory, American Mathematical Society Colloquium Publications, vol. XXV.Google Scholar
  4. [4]
    Bossu G. and Siegel P., (1985), Saturation, nonmonotonic reasoning and the closed-world assumption, Artificial Intelligence 25, 13–63.Google Scholar
  5. [5]
    Chatalic P. and Froidevaux C. (1991), Graded logics: A framework for uncertain and defeasible knowledge, Proc. of the Int. Symp. on Methodologies and Intelligent Systems, ISMIS-91, Charlotte.Google Scholar
  6. [6]
    Dubois D. Lang J. and Prade H., (1987), Theorem proving under uncertainty — A possibilistic theory-based approach, Proc. of the 10th IJCAI, Milan, 984–986.Google Scholar
  7. [7]
    Dubois D. and Prade H. (with the collaboration of Farreny H., Martin-Clouaire R., Testemale C.) (1988), Possibility Theory: An approach to computerized processing of uncertainty. Plenum Press, New-York.Google Scholar
  8. [8]
    Farinas del Cerro L., Herzig A. (1991), A modal analysis of possibility theory, Proc. of Fundamentals of Artificial Intelligence Research (FAIR' 91) Smolenice, Czechoslovakia, sept. 8–12, 1991. Springer Verlag.Google Scholar
  9. [9]
    Froidevaux C. and Grossetête C. (1989), Graded default theories, Proc. of the Workshop on Nonmonotonic Reasoning, GMD, Sankt-Augustin, December 13–15, 1989, 179–187.Google Scholar
  10. [10]
    Froidevaux C. and Grossetête C. (1990), Graded default theories for uncertainty, Proc. of the 9th ECAI, Stockholm, 283–288. Also in Proc. of DRUMS Workshop, Marseille, February 24–27, 1990.Google Scholar
  11. [11]
    Mengin J. (1991), A theorem prover for free default graded theories, Technical report LRI nℴ 637, University Paris 11. Also in Proc. of DRUMS Workshop, Albi, 1990.Google Scholar
  12. [12]
    Nilsson N.J. (1986) Probabilistic logic. Artificial Intelligence 28, 71–87.Google Scholar
  13. [13]
    Reiter R. (1980) A logic for default reasoning. Artificial Intelligence 13, 81–132.Google Scholar
  14. [14]
    Siegel P. and Schwind C., Hypothesis theory for nonmonotonic reasoning, submitted.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Christine Froidevaux
    • 1
  • Philippe Chatalic
    • 1
  • Jérôme Mengin
    • 1
  1. 1.LRI-URA 410 CNRSUniversité Paris 11Orsay

Personalised recommendations