Advertisement

Imprecise quantifiers and conditional probabilities

  • Stéphane Amarger
  • Didier Dubois
  • Henri Prade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 548)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarger S., Dubois D., Prade H. (1991a) Handling imprecisely-known conditional probabilities in conjunctive and disjunctive patterns. Proc.UNICOM “AI and Computer Power: The Impact of Statistics” Seminar, London, 13–14 March.Google Scholar
  2. Amarger S., Dubois D., Prade H. (1991b) Constraint propagation with imprecise conditional probabilities. Proc. of the 7th Conf. on Uncertainty in Artificial Intelligence, UCLA, Los Angeles, July 13–18, Morgan & Kaufmann, Palo Alto, Ca., 26–34.Google Scholar
  3. Amarger S., Epenoy R., Grihon S. (1990) Reasoning with conditional probabilities — A linear programming based method. Proc. of the DRUMS Esprit Project, RP2 Workshop, Albi, France, April 1990, (published by IRIT, Univ. P. Sabatier, Toulouse, France), 154–167.Google Scholar
  4. Baldwin J. (1990) Computational models of uncertainty reasoning in expert systems. Computers and Math. with Appl., 19, 105–119.Google Scholar
  5. Dubois D., Prade H. (1988) On fuzzy syllogisms. Computational Intelligence (Canada), 4, 171–179.Google Scholar
  6. Dubois D., Prade H. (1991a) Semantic considerations on order of magnitude reasoning. Preprints of IMACS Workshop on Decision Support Systems and Qualitative Reasoning, Toulouse, France, March 13–15, 299–302. Proceedings (M. Singh, L. Travé-Massuyèes, eds.), Elsevier, Amsterdam, to appear.Google Scholar
  7. Dubois D., Prade H. (1991b) Conditional objects and non-monotonic reasoning. Proc. 2nd Inter. Conf. on Principles of Knowledge Representation and Reasoning (KR'91), Cambridge, MA, April 22–25, 1991, 175–185.Google Scholar
  8. Dubois D., Prade H., Toucas J.M. (1990) Inference with imprecise numerical quantifiers. In: Intelligent Systems: State of the Art and Future Directions (Z. Ras, M. Zemankova, eds.), Ellis Horwood Ltd., Chichester, 52–72.Google Scholar
  9. Léa Sombé (Besnard P., Cordier M.O., Dubois D., Fariñas del Cerro L., Froidevaux C., Moinard Y., Prade H., Schwind C., Siegel P.) (1990) Reasoning Under Incomplete Information in Artificial Intelligence: A Comparison of Formalisms Using a Single Example. Wiley, New York.Google Scholar
  10. Kyburg H. (1974) The Logical Foundation of Statistical Inference. D. Reidel, Dordrecht.Google Scholar
  11. Paass G. (1988) Probabilistic logic. In: Non-Standard Logics for Automated Reasoning (D. Dubois, P. Smets, A. Mamdani, H. Prade, eds.), Academic Press, London, Ch. 8, 213–251.Google Scholar
  12. Pearl J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan and Kaufmann, San Mateo, Ca.Google Scholar
  13. Quinlan J.R. (1983) INFERNO: a cautious approach to uncertain inference. The Comp. Res., 12, 255–269.Google Scholar
  14. van der Gaag L.C. (1990) Computing probability intervals under independency constraints. Proc. of the 6th Conf. on Uncertainty in Artificial Intelligence, Cambridge, Mass., July 27–29, 491–495.Google Scholar
  15. Zadeh L.A. (1985) Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions. IEEE Trans. on Systems, Man and Cybernetics, 15(6), 745–763.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Stéphane Amarger
    • 1
  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.Institut de Recherche en Informatique de ToulouseUniversité Paul Sabatier-C.N.R.S.Toulouse CedexFrance

Personalised recommendations