A tableau-based characterisation for default logic

  • Camilla B. Schwind
  • Vincent Risch
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 548)


This paper has two objectives:
  • We first give a necessary and sufficient criterion for the existence of extension of default theories in the general case.

  • Second, we present a new, efficient and clear method for computing extensions and deriving formulae of default theory in the general case. It is based on the semantic tableaux method [Smullyan 1968] and works for default theories with a finite set of defaults that are formulated over a decidable subset of first-order logic. We prove that all extensions (if any) of a default theory can be produced by constructing the semantic tableau of one formula built from the general laws and the default consequences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Besnard P., Quiniou R., Quinton P. 1983. A Theorem-Prover for a decidable subset of default logic. Proceedings of the AAAI-83: 27–30.Google Scholar
  2. [2]
    Besnard P, Siegel P. 1988. Supposition-based logic for automated nonmonotonic reasoning. Proc. 9th Conf. on Automated Deduction, Argonne, Il.Google Scholar
  3. [3]
    Bossu G., Siegel P. 1985. Saturation, Nonmonotonic reasoning and the Closed-World Assumption. Artificial Intelligence 25, 1: 13–63.Google Scholar
  4. [4]
    Brown F. M. 1986. A commonsense theory of nonmonotonic reasoning. Proc. 8th Conf. on Automated Deduction, Oxford. Lecture Notes in Computer Science, Vol. 230, Springer Verlag: 209–228.Google Scholar
  5. [5]
    Etherington D. W. 1987. Formalizing Nonmonotonic Reasoning Systems. Artificial Intelligence, 31, 1: 81–132.Google Scholar
  6. [6]
    Gueirreiro R. A., Casanova M. A., Hermely A. S. 1990. Contributions to a Proof Theory for Generic Defaults. Proceedings of the 9th European Conference on Artificial Intelligence, ECAI — 90: 213–218.Google Scholar
  7. [7]
    Lafon E., Schwind C. 1988. A Theorem Prover for Action Performance. Proceedings of the 8th European Conference on Artificial Intelligence, ECAI-88: 541–546.Google Scholar
  8. [8]
    Lukaszewicz W. 1988. Considerations on Default Logic — An Alternative Approach. Computational Intelligence 4: 1–16.Google Scholar
  9. [9]
    Schwind C. 1985. Un démonstrateur de théorèmes pour des logiques modales et temporelles en PROLOG. 5ème Congrès AFCET Reconnaissance des formes et Intelligence Artificielle, Grenoble, France: 897–913.Google Scholar
  10. [10]
    Schwind C. 1990. A tableau-based theorem prover for a decidable subset of default logic. Proceedings of the 10th International Conference on Automated Deduction, CADE 10, Springer Verlag: 541–546.Google Scholar
  11. [11]
    Reiter R. 1980. A logic for default reasoning. Artificial Intelligence, 13, 1: 81–132.Google Scholar
  12. [12]
    Smullyan R. 1968. First-Order Logic. Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Camilla B. Schwind
    • 1
  • Vincent Risch
    • 1
  1. 1.Faculté des Sciences de Luminy, Groupe d'Intelligence ArtificielleCNRSMarseille, Cedex 9France

Personalised recommendations