Knowledge extraction in trivalued propositional logic

  • Antoine Rauzy
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 548)


In this paper, we present two methods in order to extract relevant informations from a knowledge represented with a set of trivalued propositional rules. The aim of the introduction of the third value is on the one hand to allow to deal with uncertain informations, and on the other hand to introduce a non-monotonic implication connective. We show how to extend the notion of production fields to this formalism and how the concept of unification can be applied.

Key words

Automatic Deduction Trivalued Logic Knowledge Extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BoÏ & als 90]
    Jean-Marc BoÏ, Eric Innocente, Antoine Rauzy et Pierre Siegel — Aspect de la démonstration automatique en France. Actes de Journées Nationales du PRC-IA 90.Google Scholar
  2. [Delahaye 87]
    ChaÎnage avant et calculs de modèles en logique bivaluée et trivaluée 7 Ièmes Journées Internationales sur le Systèmes Experts Avignon 87Google Scholar
  3. [de Kleer 86 a & b]
    An Assumption-Based TMS. Artificial Intelligence 28.Google Scholar
  4. [Kleene 67]
    Introduction to metamathematics North-Holland 67Google Scholar
  5. [Lukasiewicz 63]
    Elements of Mathematical Logic. Pergamon Press 63.Google Scholar
  6. [Przymusinski 89]
    Non-monotonic formalisms and logic programing Proc. 6th ICLP Google Scholar
  7. [Siegel, 87]
    Représentation et utilisation de la connaissance en calcul propositionnel, Thèse d'état, Groupe Intelligence Artificielle, Université d'Aix-Marseille II, Juillet 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Antoine Rauzy
    • 1
  1. 1.LaBRI, Université Bordeaux 1TalenceFrance

Personalised recommendations