Advertisement

Object-oriented representation of depictions on the basis of cell matrices

  • Mohammed Nadjib Khenkhar
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 546)

Abstract

In this contribution, a depictional approach for the representation and processing of spatial knowledge was presented. The approach is based on the concept of the quasi-analog representation medium cell matrices. A neighbor cell relation is defined on the cell set of a cell matrix, which the further concepts are then based upon. That is why all facts coded in this representation format are, with respect to the neighbor cell relation, represented in an analog format. Using this approach, it is possible to represent sketch-like spatial knowledge by means of depictions. This knowledge can be processed with the aid of the processes of imagination and inspection. Due to a lack of space, these types of processes were only briefly discussed in this contribution. This holds also for the strategies of problem solving of such a depictional representation system which may achieve more adequate results by taking advantage of the depictional representation. The interaction of the prepositional and the depictional component of an entire system of representation and processing of spatial knowledge has not been elaborated here. This subject is discussed in Pribbenow (1990).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downs, R., Stea, D. (1982): Kognitive Karten. Die Welt in unseren Köpfen. UTB Harper and RowGoogle Scholar
  2. Fürnsinn, M., Khenkhar, M. N., Ruschkowski, B. (1984): GEOSYS — Ein Frage-Antwort-System mit räumlichen Vorstellungsvermögen. In: C.-R. Rollinger (ed.): Probleme des Textverstehens. Ansätze der Künstlichen Intelligenz. Niemeyer, TübingenGoogle Scholar
  3. Habel, Ch. (1986): Prinzipien der Referentialität. Untersuchungen zur propositionalen Repräsentation von Wissen. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  4. Habel, Ch. (1987): Cognitive Linguistics: The Processing of Spatial Knowledge. ATALA (Association pour le Traitement Automatique des Languages), 28, 21–56. Also as: LILOG Report 45, 1988, IBM Deutschland, StuttgartGoogle Scholar
  5. Habel, Ch. (1988): Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In: H. Schnelle, G. Rickheit (eds.): Sprache in Mensch und Computer. Westdeutscher Verlag. Also as: LILOG Report 17, 1987, IBM Deutschland, StuttgartGoogle Scholar
  6. Habel, Ch. (1988): Repräsentation räumlichen Wissens. In: G. Rahmstorf (ed.): Wissensrepräsentation in Expertensystemen. Springer-Verlag, Berlin, Heidelberg, New York. Also as: Fachbereich Informatik, Uni. Hamburg, Mitteilung 153Google Scholar
  7. Habel, Ch. (1989): zwischen-Bericht. In Ch. Habel, M. Herweg, K. Rehkämper (ed.): Raumkonzepte in Verstehensprozessen. Interdisziplinäre Beiträge zu Sprache und Raum. Niemeyer, Tübingen, pp. 37–69Google Scholar
  8. Habel, Ch., Pribbenow, S. (1988): Gebietskonstituierende Prozesse. LILOG Report 18, IBM Deutschland, StuttgartGoogle Scholar
  9. Khenkhar, M. N. (1988): Vorüberlegungen zur depiktionalen Repräsentation räumlichen Wissens. LILOG Report 19, IBM Deutschland, StuttgartGoogle Scholar
  10. Khenkhar, M. N. (1989): DEPIC-2D: Eine Komponente zur depiktionalen Repräsentation und Verarbeitung räumlichen Wissens. In: D. Metzing (ed.): GWAI-89: 13th German Workshop on Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  11. Khenkhar, M. N. (1990): Eine objektorientierte Darstellung von Depiktionen auf der Grundlage von Zellmatrizen. In: Ch. Freksa, Ch. Habel (eds.): Repräsentation und Verarbeitung räumlichen Wissens. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  12. Kosslyn, S. M. (1980): Image and Mind. Harvard University Press, Cambridge, MAGoogle Scholar
  13. McCarthy, J., Hayes P. (1969): Some philosophical problems from the standpoint of artificial intelligence. In: B. Meltzer, D. Michie (eds.): Machine Intelligence. Edinburgh University PressGoogle Scholar
  14. McDermott, D., Davis E. (1984): Planning routes through uncertain territory. Artificial Intelligence, 22, 107–156CrossRefGoogle Scholar
  15. Pribbenow, S. (1988): Verträglichkeitsprüfungen für die Verarbeitung räumlichen Wissens. In: Hoeppner, W. (ed.): GWAI-88. 12th German Workshop on Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  16. Pribbenow, S. (1990): Interaktion von propositionalen und bildhaften Repräsentationen. In: Ch. Freksa, Ch. Habel (eds.): Repräsentation und Verarbeitung räumlichen Wissens. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  17. Rosch, E. (1975): Cognitive representations of semantic categories. Journal of Experimental Psychology, 104, 192–233Google Scholar
  18. Zadeh, L. A. (1965): Fuzzy sets. Information and Control, 8, 338–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Mohammed Nadjib Khenkhar

There are no affiliations available

Personalised recommendations